Skip to main content

Analysis of Schizosaccharomyces pombe Meiosis by Nuclear Spreading

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 558))

Abstract

The fission yeast, Schizosaccharomyces pombe, much like the budding yeast, is a particularly well-suited model organism for genetic research. However, the miniscule size of both yeasts’ nuclei has hindered their success as research models for cytologists. A solution to this problem is provided by the spreading of nuclei, which increases their volume and allows for a better spatial resolution of nuclear contents. Here we describe nuclear spreading in fission yeast. Spreading of meiotic nuclei is particularly helpful in exposing the linear elements (LinEs), which are the fission yeasts’ rudimentary version of the synaptonemal complex. Although the LinEs’ role is still not fully understood, they serve as important meiotic hallmarks and their presence and morphology can be used in characterizing meiotic mutants. We first describe methods to induce meiosis in liquid cell cultures, then outline a method to break down cell and nuclear membranes by detergent treatment to release chromatin on cytological slides, and finally provide a set of protocols for analyzing these nuclei by immunostaining and fluorescence in situ hybridization (FISH), and by electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olson, L. W., Edén, U., Mitani, M. E., and Egel, R. (1978) Asynaptic meiosis in fission yeast? Hereditas 89, 189–199.

    Article  Google Scholar 

  2. Lorenz, A., Wells, J. L., Pryce, D. W., Novatchkova, M., Eisenhaber, F., McFarlane, R. J., and Loidl, J. (2004) S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. J. Cell Sci. 117, 3343–3351.

    Article  PubMed  CAS  Google Scholar 

  3. Loidl, J. (2006) S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma 115, 260–271.

    Article  PubMed  Google Scholar 

  4. Chikashige, Y., Ding, D. -Q., Funabiki, H., Haraguchi, T., Mashiko, S., Yanagida, M., and Hiraoka, Y. (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264, 270–273.

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto, M., Imai, Y., and Watanabe, Y. (1997) Mating and sporulation in Schizosaccharomyces pombe, in The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and cell biology (Pringle, J. R., Broach, J. R., and Jones, E. W., eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1037–1106.

    Google Scholar 

  6. Niwa, O., Shimanuki, M., and Miki, F. (2000) Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis. EMBO J. 19, 3831–3840.

    Article  PubMed  CAS  Google Scholar 

  7. Ding, D. -Q., Yamamoto, A., Haraguchi, T., and Hiraoka, Y. (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev. Cell 6, 329–341.

    Article  PubMed  CAS  Google Scholar 

  8. Loidl, J. (2003) Chromosomes of the budding yeast, Saccharomyces cerevisiae. Int. Rev. Cytol. 222, 141–196.

    Article  PubMed  Google Scholar 

  9. Hirata, A., and Tanaka, K. (1982) Nuclear behavior during conjugation and meiosis in the fission yeast Schizosaccharomyces pombe. J. Gen. Appl. Microbiol. 28, 263–274.

    Article  Google Scholar 

  10. Loidl, J., Klein, F., and Engebrecht, J. (1998) Genetic and morphological approaches for the analysis of meiotic chromosomes in yeast, in Nuclear structure and function (Berrios, M., ed), Academic Press, San Diego, pp. 257–285.

    Google Scholar 

  11. Ding, D. -Q., Sakurai, N., Katou, Y., Itoh, T., Shirahige, K., Haraguchi, T., and Hiraoka, Y. (2006) Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. J. Cell Biol. 174, 499–508.

    Article  PubMed  CAS  Google Scholar 

  12. Bähler, J., Wyler, T., Loidl, J., and Kohli, J. (1993) Unusual nuclear structures in meiotic prophase of fission yeast: a cytological analysis. J. Cell Biol. 121, 241–256.

    Article  PubMed  Google Scholar 

  13. Watanabe, Y. and Nurse, P. (1999) Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464.

    Article  PubMed  CAS  Google Scholar 

  14. Molnar, M., Parisi, S., Kakihara, Y., Nojima, H., Yamamoto, A., Hiraoka, Y., Bozsik, A., Sipiczki, M., and Kohli, J. (2001) Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics 157, 519–532.

    PubMed  CAS  Google Scholar 

  15. Tuzon, C. T., Borgstrom, B., Weilguny, D., Egel, R., Cooper, J. P., and Nielsen, O. (2004) The fission yeast heterochromatin protein Rik1 is required for telomere clustering during meiosis. J. Cell Biol. 165, 759–765.

    Article  PubMed  CAS  Google Scholar 

  16. Jin, Y., Uzawa, S., and Cande, W. Z. (2002) Fission yeast mutants affecting telomere clustering and meiosis-specific spindle pole body integrity. Genetics 160, 861–876.

    PubMed  Google Scholar 

  17. Pérez-Hidalgo, L., Moreno, S., and San-Segundo, P. A. (2003) Regulation of meiotic progression by the meiosis-specific checkpoint kinase Mek1 in fission yeast. J. Cell Sci. 116, 259–271.

    Article  PubMed  Google Scholar 

  18. Nakamura, T. M., Moser, B. A., and Russell, P. (2002) Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics 161, 1437–1452.

    PubMed  CAS  Google Scholar 

  19. Lorenz, A., Estreicher, A., Kohli, J., and Loidl, J. (2006) Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma 115, 330–340.

    Article  PubMed  CAS  Google Scholar 

  20. Forsburg, S. L., and Rhind, N. (2006) Basic methods for fission yeast. Yeast 23, 173–183.

    Article  PubMed  CAS  Google Scholar 

  21. Chikashige, Y., Kurokawa, R., Haraguchi, T., and Hiraoka, Y. (2004) Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeast Schizosaccharomyces pombe. Genes Cells 9, 671–684.

    Article  PubMed  CAS  Google Scholar 

  22. Bähler, J., Schuchert, P., Grimm, C., and Kohli, J. (1991) Synchronized meiosis and recombination in fission yeast: observations with pat1-114 diploid cells. Curr. Genet. 19, 445–451.

    Article  PubMed  Google Scholar 

  23. Cervantes, M. D., Farah, J. A., and Smith, G. R. (2000) Meiotic DNA breaks associated with recombination in S. pombe. Mol. Cell 5, 883–888.

    Article  PubMed  CAS  Google Scholar 

  24. Moreno, S., Klar, A., and Nurse, P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Meth. Enzymol. 194, 795–823.

    Article  PubMed  CAS  Google Scholar 

  25. Molnar, M., Doll, E., Yamamoto, A., Hiraoka, Y., and Kohli, J. (2003) Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. J. Cell Sci. 116, 1719–1731.

    Article  PubMed  CAS  Google Scholar 

  26. Harlow, E. and Lane, D. (1988) Antibodies. A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–726.

    Google Scholar 

  27. Herickhoff, L., Stack, S., and Robertson, J. (1992) Staining plant cells with silver. III. The mechanism. Biotech. Histochem. 67, 171–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Eveline Doll and Katja Ludin (University of Berne), Harry Scherthan (Inst. Radiobiology Bw, Munich), Jörg Fuchs (Leibnitz Institute, Gatersleben), and Mario Spirek (University of Vienna) for technical hints and expert advice, and to Maria Siomos (Gregor Mendel Institute, Vienna) for correcting the manuscript. We thank Julia P. Cooper (Cancer Research UK), Jürg Kohli (University of Berne), Ramsay J. McFarlane (University of Wales, Bangor), Paul Nurse (The Rockefeller University), Pedro San-Segundo (University of Salamanca), and John Woodward (Sanger Centre, Hinxton) for kindly providing strains, antibodies, and other materials mentioned in this article. Work in the lab of J.L. is supported by grant P18186 of the Austrian Science Fund (FWF). A.L. is an Erwin Schrödinger-Fellow of the FWF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Loidl, J., Lorenz, A. (2009). Analysis of Schizosaccharomyces pombe Meiosis by Nuclear Spreading. In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 558. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-103-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-103-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-102-8

  • Online ISBN: 978-1-60761-103-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics