Skip to main content

Chromosome Spreading and Immunofluorescence Methods in Saccharomyes cerevisiae

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 558))

Abstract

Visualization of meiotic chromosomes in the model organism S. cerevisiae has become an integral part of the study of wild-type meiosis and the characterization of mutant phenotypes. This chapter describes a simple method for chromosome spreading, which is a variation on a protocol originally developed by Dresser and Giroux (1). This method uses osmotic pressure to spread the nuclear contents of spheroplasted meiotic cells over a glass slide enabling unobstructed inspection of the chromosomal morphology. Chromosomes from all meiotic stages can be analyzed using indirect immunofluorescence to visualize meiotic proteins involved in different processes of meiosis, including recombination, synapsis, sister chromatid cohesion, and chromosome disjunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresser, M. E., and Giroux, C. N. (1988) Meiotic chromosome behavior in spread preparations of yeast, J. Cell Biol. 106, 567–578.

    Article  PubMed  CAS  Google Scholar 

  2. Roeder, G. S. (1995) Sex and the single cell: meiosis in yeast, Proc. Natl. Acad. Sci. USA 92, 10450–10456.

    Article  PubMed  CAS  Google Scholar 

  3. Loidl, J. (2003) Chromosomes of the budding yeast Saccharomyces cerevisiae, Int. Rev. Cytol. 222, 141–196.

    Article  PubMed  Google Scholar 

  4. Page, S. L., and Hawley, R. S. (2004) The genetics and molecular biology of the synaptonemal complex, Annu. Rev. Cell Dev. Biol. 20, 525–558.

    Article  PubMed  CAS  Google Scholar 

  5. Zickler, D. (2006) From early homologue recognition to synaptonemal complex formation, Chromosoma 115, 158–174.

    Article  PubMed  Google Scholar 

  6. Goetsch, L., and Byers, B. (1982) Meiotic cytology of Saccharomyces cerevisiae in protoplast lysates, Mol. Gen. Genet. 187, 54–60.

    Article  PubMed  CAS  Google Scholar 

  7. Loidl, J., Nairz, K., and Klein, F. (1991) Meiotic chromosome synapsis in a haploid yeast, Chromosoma 100, 221–228.

    Article  PubMed  CAS  Google Scholar 

  8. Rockmill, B., Fung, J. C., Branda, S. S., and Roeder, G. S. (2003) The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over, Curr. Biol. 13, 1954–1962.

    Article  PubMed  CAS  Google Scholar 

  9. Li, J., Hooker, G. W., and Roeder, G. S. (2006) Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required for meiotic double-strand break formation, Genetics 173, 1969–1981.

    Article  PubMed  CAS  Google Scholar 

  10. Rockmill, B., and Roeder, G. S. (1998) Telomere-mediated chromosome pairing during meiosis in budding yeast, Genes Dev. 12, 2574–2586.

    Article  PubMed  CAS  Google Scholar 

  11. Kane, S. M., and Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast, J. Bacteriol. 118, 8–14.

    PubMed  CAS  Google Scholar 

  12. McCusker, J. H., and Haber, J. E. (1988) Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae, Genetics 119, 303–315.

    PubMed  CAS  Google Scholar 

  13. Padmore, R., Cao, L., and Kleckner, N. (1991) Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae, Cell 66, 1239–1256.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, A. V., and Roeder, G. S. (1997) The yeast Red1 protein localizes to the cores of meiotic chromosomes, J. Cell Biol. 136, 957–967.

    Article  PubMed  CAS  Google Scholar 

  15. Sym, M., Engebrecht, J., and Roeder, G. S. (1993) Zip1 is a synaptonemal complex protein required for meiotic chromosome synapsis, Cell 72, 365–378.

    Article  PubMed  CAS  Google Scholar 

  16. Bishop, D. K. (1994) RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis, Cell 79, 1081–1092.

    Article  PubMed  CAS  Google Scholar 

  17. Schneider, B. L., Seufert, W., Steiner, B., Yang, Q. H., and Futcher, A. B. (1995) Use of PCR epitope tagging for protein tagging in S. cerevisiae, Nucl. Acid Res. 11, 1265–1274.

    CAS  Google Scholar 

  18. White, E. J., Cowan, C., Cande, W. Z., and Kaback, D. B. (2004) In vivo analysis of synaptonemal complex formation during yeast meiosis, Genetics 167, 51–63.

    Article  PubMed  CAS  Google Scholar 

  19. Jessop, L., Rockmill, B., Roeder, G. S., and Lichten, M. (2006) Meiotic chromosome synapsis-promoting proteins antagonize the anti-crossover activity of Sgs1, PLos Genet. 2, e155.

    Article  PubMed  Google Scholar 

  20. Agarwal, S., and Roeder, G. S. (2000) Zip3 provides a link between recombination enzymes and synaptonemal complex proteins, Cell 102, 245–255.

    Article  PubMed  CAS  Google Scholar 

  21. Fung, J. C., Rockmill, B., Odell, M., and Roeder, G. S. (2004) Imposition of crossover interference through the nonrandom distribution of synapsis initiation complexes, Cell 116, 795–802.

    Article  PubMed  CAS  Google Scholar 

  22. Chua, P. R., and Roeder, G. S. (1997) Tam1, a telomere-associated meiotic protein, functions in chromosome synapsis and crossover interference, Genes Dev. 11, 1786–1800.

    Article  PubMed  CAS  Google Scholar 

  23. Tsubouchi, H., and Roeder, G. S. (2004) The budding yeast Mei5 and Sae3 proteins act together with Dmc1 during meiotic recombination, Genetics 168, 1219–1230.

    Article  PubMed  CAS  Google Scholar 

  24. Ross-Macdonald, P., and Roeder, G. S. (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction, Cell 79, 1069–1080.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Eva Hoffmann and Nancy Hollingsworth for valuable comments on the manuscript and Howard Hughes Medical Institute for funding this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rockmill, B. (2009). Chromosome Spreading and Immunofluorescence Methods in Saccharomyes cerevisiae . In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 558. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-103-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-103-5_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-102-8

  • Online ISBN: 978-1-60761-103-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics