Skip to main content
Book cover

Mitosis pp 301–312Cite as

Preparation of Synchronized Human Cell Extracts to Study Ubiquitination and Degradation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 545))

Abstract

Ubiquitination and protein degradation regulate cell cycle progression in all eukaryotes. During mitosis, ubiquitination by the Anaphase-Promoting Complex/Cyclosome (APC/C) triggers sister chromatid separation and mitotic exit. The APC/C is tightly regulated by phosphorylation, ubiquitination, association of activators or inhibitors, and competitive binding of substrates. Much of our understanding of the mechanism of APC/C-dependent ubiquitination has been obtained from studies using extracts of Xenopus laevis eggs or synchronized human tissue culture cells. Here, we describe protocols to prepare extracts of synchronized human cells, and discuss experiments to use extracts for the biochemical analysis of APC/C-dependent ubiquitination.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sullivan, M., and Morgan, D.O. (2007) Finishing mitosis, one step at a time. Nat Rev. Mol. Cell Biol. 8, 894–903.

    Article  PubMed  CAS  Google Scholar 

  2. Peters, J. M. (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656.

    Article  CAS  Google Scholar 

  3. Sotillo, R., Hernando, E., Díaz-Rodríguez, E., Teruya-Feldstein, J., Cordón-Cardo, C., Lowe, S.W., and Benezra, R. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9–23.

    Article  PubMed  CAS  Google Scholar 

  4. Dye, B.T., and Schulman, B.A. (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–50.

    Article  PubMed  CAS  Google Scholar 

  5. Rape, M., Reddy, S.K., and Kirschner, M.W. (2006) The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103.

    Article  PubMed  CAS  Google Scholar 

  6. Rape, M., and Kirschner, M.W. (2004) Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588–95.

    Article  PubMed  CAS  Google Scholar 

  7. Yu, H. (2002) Regulation of APC-Cdc20 by the spindle checkpoint. Curr. Opin. Cell Biol. 14, 706–14.

    Article  PubMed  CAS  Google Scholar 

  8. Musacchio, A., and Hardwick, K. G. (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat. Rev. Mol. Cell Biol. 3, 731–41.

    Article  PubMed  CAS  Google Scholar 

  9. Reddy, S.K., Rape, M., Marganski, W.A., and Kirschner, M.W. (2007). Mutual regulation between the spindle checkpoint and the anaphase-promoting complex ensures timely progression to anaphase. Nature 446, 921–5.

    Article  PubMed  CAS  Google Scholar 

  10. Xia, G., Luo, X., Habu, T., Rizo, J., Matsumoto, T., and Yu, H. (2004). Conformation-specific binding of p31(comet) antagonizes the function of Mad2 in the spindle checkpoint. EMBO J. 23, 3133–43.

    Article  PubMed  CAS  Google Scholar 

  11. Stegmeier, F., et al. (2007) Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876–81.

    Article  PubMed  CAS  Google Scholar 

  12. Brito, D.A., and Rieder, C.L. (2006). Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–200.

    Article  PubMed  CAS  Google Scholar 

  13. di Fiore, B., and Pines, J. (2007). Emi1 is needed to couple DNA replication with mitosis but does not regulate activation of the mitotic APC/C. J. Cell Biol. 177, 425–37.

    Article  PubMed  Google Scholar 

  14. Hagting, A., Den Elzen, N., Vodermaier, H.C., Waizenegger, I.C., Peters, J.M., and Pines, J. (2002). Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williamson, A., Jin, L., Rape, M. (2009). Preparation of Synchronized Human Cell Extracts to Study Ubiquitination and Degradation. In: McAinsh, A. (eds) Mitosis. Methods in Molecular Biology, vol 545. Humana Press. https://doi.org/10.1007/978-1-60327-993-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-993-2_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-992-5

  • Online ISBN: 978-1-60327-993-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics