Skip to main content

Analysing Kinetochore Function in Human Cells: Spindle Checkpoint and Chromosome Congression

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 545))

Abstract

During cell division microtubules of the mitotic spindle segregate the duplicated chromosomes into the two daughter cells. Chromosome–microtubule attachment is mediated by kinetochores, multiprotein complexes assembled on specialized regions of the DNA. Kinetochores modulate microtubule dynamics to generate the forces necessary to power chromosome movement and regulate the spindle checkpoint. Errors in kinetochore function can cause aneuploidy, a hallmark of 80% of solid tumors in humans, suggesting a fundamental link to tumorigenesis. Human kinetochores are complex protein machines with over 100 different proteins. Here we present fixed- and live-cell-based assays used to functionally categorize kinetochore proteins with regard to spindle checkpoint activity and kinetochore–microtubule attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleveland, D. W., Mao, Y., and Sullivan, K. F. (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–21.

    Article  PubMed  CAS  Google Scholar 

  2. Chan, G. K., Liu, S. T., and Yen, T. J. (2005) Kinetochore structure and function. Trends Cell. Biol. 15, 589–98.

    Article  PubMed  CAS  Google Scholar 

  3. Westermann, S., Drubin, D. G., and Barnes, G. (2007) Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–91.

    Article  PubMed  CAS  Google Scholar 

  4. Musacchio, A., and Salmon, E. D. (2007) The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–93.

    Article  PubMed  CAS  Google Scholar 

  5. Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., Dobles, M., Sorger, P. K., Murty, V. V., and Benezra, R. (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hernando, E., Nahle, Z., Juan, G., Diaz-Rodriguez, E., Alaminos, M., Hermann, M., Michel, L., Mittal, V., Gerald, W., Benezra, R., Lowe, S. W., and Cordon-Cardo, C. (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430: 797–802.

    Article  PubMed  CAS  Google Scholar 

  7. Warren, C. D., Brady, D. M., Johnston, R. C., Hanna, J. S., Hardwick, K. G., and Spencer, F.A. (2002) Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell 13, 3029–41.

    Article  PubMed  CAS  Google Scholar 

  8. Draviam, V. M., Xie, S., and Sorger, P. K. (2004) Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev. 14, 120–5.

    Article  PubMed  CAS  Google Scholar 

  9. Dai, W., Wang, Q., Liu, T., Swamy, M., Fang, Y., Xie, S., Mahmood, R., Yang, Y. M., Xu, M., and Rao, C. V. (2004) Slippage of mitotis arrest and enhanced tumor development in mice with BubR1 haploinsuffiency. Cancer Res. 64: 440–5.

    Article  PubMed  CAS  Google Scholar 

  10. Meraldi, P., and Sorger, P. K. (2005) A dual role of Bub1 in the spindle checkpoint and chromosome congression. EMBO J. 24, 1621–33.

    Article  PubMed  CAS  Google Scholar 

  11. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1997) Genetic instability in colorectal cancers. Nature 386, 623–7.

    Article  PubMed  CAS  Google Scholar 

  12. Masuda, A., and Takahashi, T. (2002) Chromosome instability in human lung cancers: possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21, 6884–97.

    Article  PubMed  CAS  Google Scholar 

  13. Lengauer, C., and Wang, Z. (2004) From spindle chechpoint to cancer. Nature Genet. 36, 1144–5.

    Article  PubMed  CAS  Google Scholar 

  14. Yuen, K. W., Montpetit, B., and Hieter, P. (2005) The kinetochore and cancer: what’s the connection? Curr. Opin. Cell Biol. 17, 576–82.

    Article  PubMed  CAS  Google Scholar 

  15. Meraldi, P., McAinsh, A. D., Rheinbay, E., and Sorger P. K. (2006) Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 7, R23.

    Article  PubMed  Google Scholar 

  16. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–8.

    Article  PubMed  CAS  Google Scholar 

  17. McAinsh, A. D., Meraldi, P., Draviam, V. M., Toso, A., Sorger, P.K. (2006) The human kinetochore proteins Nnf1R and Mcm21R are required for accurate chromosome segregation. EMBO J. 25, 4033–49.

    Article  PubMed  CAS  Google Scholar 

  18. Harper, J. V. (2005) Synchronization of cell populations in G1/S and G2/M phases of the cell cycle. Methods Mol. Biol. 296, 157–66.

    PubMed  CAS  Google Scholar 

  19. Uzbekov, R., Chartrain, I., Philippe, M., and Arlot-Bonnemains, Y. (1998) Cell cycle analysis and synchronization of the Xenopus cell line XL2. Exp. Cell. Res. 242, 60–8.

    Article  PubMed  CAS  Google Scholar 

  20. Tanudji, M., Shoemaker, J., L’Italien, L., Russell, L., Chin, G., and Schebye, X. M. (2004) Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol. Biol. Cell. 15, 3771–81.

    Article  PubMed  CAS  Google Scholar 

  21. De Brabander, M. J., Van de Veire, R. M. L., Aerts, F. E. M., Borgers, M., and Janssen, P. A. J. (1976) The effects of methyl [5-(2-Thienylcarbonyl)-1H-benzimindazol-2-yl]carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultures in vitro. Cancer Res. 36: 905–916.

    PubMed  Google Scholar 

  22. De Brabander, M., Geuens, G., Nuydens, R., Willebrords, R., and De Mey, J. (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA 78: 5608–12.

    Article  PubMed  Google Scholar 

  23. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–4.

    Article  PubMed  CAS  Google Scholar 

  24. Tapia, C., Kutzner, H., Mentzel, T., Savic, S., Baumhoer, D., and Glatz, K. (2006) Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser28), allow rapid and precise determination of mitotic activity. Am. J. Surg. Pathol. 30, 83–9.

    Article  PubMed  Google Scholar 

  25. Rock, K. L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L. (1994) Inhibitors of the proteasome block the degradation of most proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–71.

    Article  PubMed  CAS  Google Scholar 

  26. Gergely, F., Draviam, V. M., and Raff, J. W. (2003) The ch-TOG/XMAP215 protein is essential for spindle pole organization in human somatic cells. Genes Dev. 17, 336–41.

    Article  PubMed  CAS  Google Scholar 

  27. Cassimeris, L., and Morabito, J. (2004) TOGp, the human homolog of XMAP215/ Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol. Biol. Cell. 15, 1580–90.

    Article  PubMed  CAS  Google Scholar 

  28. DeLuca, J. G., Moree, B., Hickey, J. M., Kilmartin, J. V., and Salmon, E.D. (2002) hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J. Cell. Biol. 159, 549–55.

    Article  PubMed  CAS  Google Scholar 

  29. Hauf, S., Cole, R. W., LaTerra, S., Zimmer, C., Schnapp, G., Walter, R., Heckel, A., van Meel, J., Rieder, C. L., and Peters, J. M. (2003) The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell. Biol. 161, 281–94.

    Article  PubMed  CAS  Google Scholar 

  30. Salmon, E. D., Cimini, D., Cameron, L. A., and DeLuca, J. G. (2005) Merotelic kinetochores in mammalian tissue cells. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360: 553–68.

    Article  PubMed  CAS  Google Scholar 

  31. Salmon, E. D., and Begg, D. A. (1980) Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J Cell Biol. 85, 853–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Klebig, C., Toso, A., Borusu, S., Meraldi, P. (2009). Analysing Kinetochore Function in Human Cells: Spindle Checkpoint and Chromosome Congression. In: McAinsh, A. (eds) Mitosis. Methods in Molecular Biology, vol 545. Humana Press. https://doi.org/10.1007/978-1-60327-993-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-993-2_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-992-5

  • Online ISBN: 978-1-60327-993-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics