Skip to main content

Application of fMRI to Monitor Motor Rehabilitation

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

Motor deficits contribute to disability in a number of neurological conditions. A wide range of emerging restorative therapies has the potential to reduce this by favorably modifying function. In many medical contexts, a study of target organ function improves efficacy of a therapeutic intervention. However, the optimal methods to prescribe a restorative therapy in the setting of central nervous system (CNS) disease are not clear. Brain mapping studies have the potential to provide useful insights in this regard. Examples of restorative therapies are provided, and human trials are summarized whereby brain mapping data have proven useful in promoting motor improvements in subjects with a neurological condition. In some cases, brain mapping findings that correlate with better outcome with spontaneous behavioral recovery correspond to findings that predict better treatment response in the context of a clinical trial. Similarities across CNS conditions, such as stroke and multiple sclerosis, are discussed. Further studies are needed to understand which methods have the greatest value to monitor, predict, triage, and dose restorative therapies in trials that aim to reduce motor, and other neurological, deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobkin B. The Clinical Science of Neurologic Rehabilitation. New York: Oxford University Press; 2003.

    Google Scholar 

  2. Chen J, Cui X, Zacharek A, et al. Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol 2007;62(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  3. Li L, Jiang Q, Zhang L, et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res 2007;1132(1):185–92.

    Article  PubMed  CAS  Google Scholar 

  4. Chen P, Goldberg D, Kolb B, Lanser M, Benowitz L. Inosine induces axonal rewiring and improves behavioral outcome after stroke. Proc Natl Acad Sci USA 2002;99(13):9031–6.

    Article  PubMed  CAS  Google Scholar 

  5. Freret T, Valable S, Chazalviel L, et al. Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 2006;23(7):1757–65.

    Article  PubMed  Google Scholar 

  6. Papadopoulos CM, Tsai SY, Cheatwood JL, et al. Dendritic plasticity in the adult rat following middle cerebral artery occlusion and Nogo-a neutralization. Cereb Cortex 2006;16(4):529–36.

    Article  PubMed  Google Scholar 

  7. Kawamata T, Dietrich W, Schallert T, et al. Intracisternal basic fibroblast growth factor (bFGF) enhances functional recovery and upregulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci 1997;94:8179–84.

    Article  PubMed  CAS  Google Scholar 

  8. Kawamata T, Ren J, Chan T, Charette M, Finklestein S. Intracisternal osteogenic protein-1 enhances functional recovery following focal stroke. NeuroReport 1998;9(7):1441–5.

    Article  PubMed  CAS  Google Scholar 

  9. Schabitz WR, Berger C, Kollmar R, et al. Effect of brain-derived neurotrophic factor treatment and forced arm use on functional motor recovery after small cortical ischemia. Stroke 2004;35(4):992–7.

    Article  PubMed  CAS  Google Scholar 

  10. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35(7):1732–7.

    Article  PubMed  CAS  Google Scholar 

  11. Tsai PT, Ohab JJ, Kertesz N, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006;26(4):1269–74.

    Article  PubMed  CAS  Google Scholar 

  12. Schneider UC, Schilling L, Schroeck H, Nebe CT, Vajkoczy P, Woitzik J. Granulocyte-macrophage colony-stimulating factor-induced vessel growth restores cerebral blood supply after bilateral carotid artery occlusion. Stroke 2007;38(4):1320–8.

    Article  PubMed  CAS  Google Scholar 

  13. Kolb B, Morshead C, Gonzalez C, et al. Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 2007;27(5):983–97.

    PubMed  CAS  Google Scholar 

  14. Zhao LR, Berra HH, Duan WM, et al. Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke 2007;38(10):2804–11.

    Article  PubMed  CAS  Google Scholar 

  15. Ehrenreich H, Hasselblatt M, Dembowski C, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002;8(8):495–505.

    PubMed  CAS  Google Scholar 

  16. Savitz SI, Dinsmore JH, Wechsler LR, Rosenbaum DM, Caplan LR. Cell therapy for stroke. NeuroRx 2004;1(4):406–14.

    Article  PubMed  Google Scholar 

  17. Keirstead HS, Nistor G, Bernal G, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005;25(19):4694–705.

    Article  PubMed  CAS  Google Scholar 

  18. Cummings BJ, Uchida N, Tamaki SJ, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 2005;102(39):14069–74.

    Article  PubMed  CAS  Google Scholar 

  19. Shen LH, Li Y, Chen J, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 2007;27:6–13.

    Article  PubMed  CAS  Google Scholar 

  20. Khedr EM, Ahmed MA, Fathy N, Rothwell JC. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005;65(3):466–8.

    Article  PubMed  Google Scholar 

  21. Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 2006;37(6):1471–6.

    Article  PubMed  Google Scholar 

  22. Malcolm MP, Triggs WJ, Light KE, et al. Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial. Am J Phys Med Rehabil/Assoc Acad Physiatrists 2007;86(9):707–15.

    Article  Google Scholar 

  23. Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128(Pt 3):490–9.

    Article  PubMed  Google Scholar 

  24. Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 2006;58(3):464–73.

    PubMed  Google Scholar 

  25. Ring H, Rosenthal N. Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med 2005;37(1):32–6.

    Article  PubMed  Google Scholar 

  26. Sheffler LR, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 2007;35(5):562–90.

    Article  PubMed  Google Scholar 

  27. Kwakkel G, Kollen BJ, Krebs HI. Effects of Robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair 2008;22(2):111–21.

    PubMed  Google Scholar 

  28. Volpe BT, Ferraro M, Lynch D, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Neurol Neurosci Rep 2005;5(6):465–70.

    Article  PubMed  Google Scholar 

  29. Reinkensmeyer D, Emken J, Cramer S. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 2004;6:497–525.

    Article  PubMed  CAS  Google Scholar 

  30. Deutsch JE, Lewis JA, Burdea G. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans Neural Syst Rehabil Eng 2007;15(1):30–5.

    Article  PubMed  Google Scholar 

  31. Duncan P, Studenski S, Richards L, et al. Randomized clinical trial of therapeutic exercise in subacute stroke. Stroke 2003;34(9):2173–80.

    Article  PubMed  Google Scholar 

  32. Woldag H, Hummelsheim H. Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol 2002;249(5):518–28.

    Article  PubMed  Google Scholar 

  33. French B, Thomas L, Leathley M, et al Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews (Online) 2007;(4):CD006073.

    Google Scholar 

  34. Kwakkel G, Wagenaar R, Twisk J, Lankhorst G, Koetsier J. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 1999;354(9174):191–6.

    Article  PubMed  CAS  Google Scholar 

  35. Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil 2004;18(8):833–62.

    Article  PubMed  CAS  Google Scholar 

  36. Luft A, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 2004;292(15):1853–61.

    Article  PubMed  CAS  Google Scholar 

  37. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006;296(17):2095–104.

    Article  PubMed  CAS  Google Scholar 

  38. Rathore S, Hinn A, Cooper L, Tyroler H, Rosamond W. Characterization of incident stroke signs and symptoms: findings from the atherosclerosis risk in communities study. Stroke 2002;33(11):2718–21.

    Article  PubMed  Google Scholar 

  39. Gresham G, Duncan P, Stason W, et al Post-Stroke Rehabilitation. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research; 1995.

    Google Scholar 

  40. Duncan P, Goldstein L, Horner R, Landsman P, Samsa G, Matchar D. Similar motor recovery of upper and lower extremities after stroke. Stroke 1994;25(6):1181–8.

    Article  PubMed  CAS  Google Scholar 

  41. Duncan P, Goldstein L, Matchar D, Divine G, Feussner J. Measurement of motor recovery after stroke. Stroke 1992;23:1084–9.

    Article  PubMed  CAS  Google Scholar 

  42. Nakayama H, Jorgensen H, Raaschou H, Olsen T. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 1994;75(4):394–8.

    Article  PubMed  CAS  Google Scholar 

  43. Wade D, Langton-Hewer R, Wood V, Skilbeck C, Ismail H. The hemiplegic arm after stroke: measurement and recovery. J Neurol Neurosurg Psychiatry 1983;46(6):521–4.

    Article  PubMed  CAS  Google Scholar 

  44. Yozbatiran N, Cramer SC. Imaging motor recovery after stroke. NeuroRx 2006;3(4):482–8.

    Article  PubMed  Google Scholar 

  45. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004;61(12):1844–8.

    Article  PubMed  Google Scholar 

  46. Baron J, Cohen L, Cramer S, et al. Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc Dis (Basel, Switzerland) 2004;18(3):260–7.

    Article  Google Scholar 

  47. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 2006;26(22):6096–102.

    Article  PubMed  CAS  Google Scholar 

  48. Winhuisen L, Thiel A, Schumacher B, et al. Role of the contra lateral inferior frontal gyrus in recovery of language function in poststroke aphasia: a combined repetitive transcranial magnetic stimulation and positron emission tomography study. Stroke 2005;36(8):1759–63.

    Article  PubMed  Google Scholar 

  49. Johansen-Berg H, Rushworth M, Bogdanovic M, Kischka U, Wimalaratna S, Matthews P. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 2002;99(22):14518–23.

    Article  PubMed  CAS  Google Scholar 

  50. Werhahn K, Conforto A, Kadom N, Hallett M, Cohen L. Contribution of the ipsilateral motor cortex to recovery after chronic stroke. Ann Neurol 2003;54(4):464–72.

    Article  PubMed  Google Scholar 

  51. Fridman E, Hanakawa T, Chung M, Hummel F, Leiguarda R, Cohen L. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 2004;127(Pt 4):747–58.

    Article  PubMed  Google Scholar 

  52. Cramer S, Benson R, Himes D, et al Use of functional MRI to guide decisions in a clinical stroke trial. Stroke 2005;36(5):e50–2.

    Article  PubMed  Google Scholar 

  53. Platz T, Kim I, Engel U, Kieselbach A, Mauritz K. Brain activation pattern as assessed with multi-modal EEG analysis predict motor recovery among stroke patients with mild arm paresis who receive the Arm Ability Training. Restor Neurol Neurosci 2002;20(1–2):21–35.

    PubMed  CAS  Google Scholar 

  54. Dong Y, Dobkin BH, Cen SY, Wu AD, Winstein CJ. Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke 2006;37(6):1552–5.

    Article  PubMed  Google Scholar 

  55. Fritz SL, Light KE, Patterson TS, Behrman AL, Davis SB. Active finger extension predicts outcomes after constraint-induced movement therapy for individuals with hemiparesis after stroke. Stroke 2005;36(6):1172–7.

    Article  PubMed  Google Scholar 

  56. Koski L, Mernar T, Dobkin B. Immediate and long-term changes in corticomotor output in response to rehabilitation: correlation with functional improvements in chronic stroke. Neurorehabil Neural Repair 2004;18(4):230–49.

    Article  PubMed  Google Scholar 

  57. Cramer S, Parrish T, Levy R, et al An assessment of brain function predicts functional gains in a clinical stroke trial. Stroke 2007;38:520 (abstract).

    Google Scholar 

  58. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130(Pt 1):170–80.

    PubMed  Google Scholar 

  59. Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Exp Brain Res 2007;177(2):233–42.

    Article  PubMed  Google Scholar 

  60. Carey J, Kimberley T, Lewis S, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125(Pt 4):773–88.

    Article  PubMed  Google Scholar 

  61. Hodics T, Cohen LG, Cramer SC. Functional imaging of intervention effects in stroke motor rehabilitation. Arch Phys Med Rehabil 2006;87(12 Suppl):36–42.

    Article  Google Scholar 

  62. Schaechter J, Kraft E, Hilliard T, et al. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 2002;16(4):326–38.

    Article  PubMed  Google Scholar 

  63. Johansen-Berg H, Dawes H, Guy C, Smith S, Wade D, Matthews P. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002;125(Pt 12):2731–42.

    Article  PubMed  Google Scholar 

  64. Vukusic S, Confavreux C. Natural history of multiple sclerosis: risk factors and prognostic indicators. Curr Opin Neurol 2007;20(3):269–74.

    Article  PubMed  Google Scholar 

  65. Vollmer T. The natural history of relapses in multiple sclerosis. J Neurol Sci 2007;256(Suppl 1):S5–S13.

    Article  PubMed  Google Scholar 

  66. Rocca MA, Filippi M. Functional MRI in multiple sclerosis. J Neuroimaging 2007;17(Suppl 1):36S–41S.

    Article  PubMed  Google Scholar 

  67. Rocca MA, Colombo B, Falini A, et al. Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 2005;4(10):618–26.

    Article  PubMed  Google Scholar 

  68. Wang J, Hier DB. Motor reorganization in multiple sclerosis. Neurol Res 2007;29(1):3–8.

    Article  PubMed  Google Scholar 

  69. Pantano P, Mainero C, Caramia F. Functional brain reorganization in multiple sclerosis: evidence from fMRI studies. J Neuroimaging 2006;16(2):104–14.

    Article  PubMed  Google Scholar 

  70. Ward N, Brown M, Thompson A, Frackowiak R. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003;126(Pt 6):1430–48.

    Article  PubMed  CAS  Google Scholar 

  71. Cramer SC, Crafton KR. Somatotopy and movement representation sites following cortical stroke. Exp Brain Res Experimentelle Hirnforschung 2006;168(1/2):25–32.

    Article  Google Scholar 

  72. Lenzi D, Conte A, Mainero C, et al. Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapping 2007;28(7):636–44.

    Article  Google Scholar 

  73. Rocca MA, Gallo A, Colombo B, et al. Pyramidal tract lesions and movement-associated cortical recruitment in patients with MS. NeuroImage 2004;23(1):141–7.

    Article  PubMed  Google Scholar 

  74. Reddy H, Narayanan S, Matthews P, et al. Relating axonal injury to functional recovery in MS. Neurology 2000;54(1):236–9.

    Article  PubMed  CAS  Google Scholar 

  75. Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M. Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapping 2008;29(5):562–73.

    Article  Google Scholar 

  76. Cramer S, Nelles G, Benson R, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28(12):2518–27.

    Article  PubMed  CAS  Google Scholar 

  77. Filippi M, Rocca MA, Mezzapesa DM, et al. A functional MRI study of cortical activations associated with object manipulation in patients with MS. NeuroImage 2004;21(3):1147–54.

    Article  PubMed  Google Scholar 

  78. Parry AM, Scott RB, Palace J, Smith S, Matthews PM. Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 2003;126(Pt 12):2750–60.

    Article  PubMed  Google Scholar 

  79. Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M. Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 1996;16(8):2691–700.

    PubMed  CAS  Google Scholar 

  80. Verstynen T, Diedrichsen J, Albert N, Aparicio P, Ivry RB. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol 2005;93(3):1209–22.

    Article  PubMed  Google Scholar 

  81. Mainero C, Inghilleri M, Pantano P, et al. Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 2004;62(11):2044–50.

    Article  PubMed  CAS  Google Scholar 

  82. Morgen K, Kadom N, Sawaki L, et al. Training-dependent plasticity in patients with multiple sclerosis. Brain 2004;127(Pt 11):2506–17.

    Article  PubMed  Google Scholar 

  83. www.spinalcord.uab.edu. Facts and figures at a glance – June 2006. 2007.

  84. Geisler F, Dorsey F, Coleman W. Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. New Eng J Med 1991;324(26):1829–38.

    Article  PubMed  CAS  Google Scholar 

  85. Ditunno J, Stover S, Freed M, Ahn J. Motor recovery of the upper extremities in traumatic quadriplegia: a multicenter study. Arch Phys Med Rehabil 1992;73(5):431–6.

    PubMed  Google Scholar 

  86. Kirshblum S, Millis S, McKinley W, Tulsky D. Late neurologic recovery after traumatic spinal cord injury. Arch Phys Med Rehabil 2004;85(11):1811–7.

    Article  PubMed  Google Scholar 

  87. Jayaraman A, Gregory CM, Bowden M, et al. Lower extremity skeletal muscle function in persons with incomplete spinal cord injury. Spinal Cord 2006;44(11):680–7.

    Article  PubMed  CAS  Google Scholar 

  88. DeVivo MJ, Richards JS. Community reintegration and quality of life following spinal cord injury. Paraplegia 1992;30(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  89. Frankel HL, Coll JR, Charlifue SW, et al. Long-term survival in spinal cord injury: a fifty year investigation. Spinal Cord 1998;36(4): 266–74.

    Article  PubMed  CAS  Google Scholar 

  90. Cramer SC, Lastra L, Lacourse MG, Cohen MJ. Brain motor system function after chronic, complete spinal cord injury. Brain 2005;128(Pt 12):2941–50.

    Article  PubMed  Google Scholar 

  91. Jurkiewicz MT, Mikulis DJ, McIlroy WE, Fehlings MG, Verrier MC. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study. Neurorehabil Neural Repair 2007;21(6):527–38.

    Article  PubMed  Google Scholar 

  92. Sabbah P, de Schonen S, Leveque C, et al. Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma 2002;19(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  93. Alkadhi H, Brugger P, Boendermaker S, et al. What disconnection tells about motor imagery: evidence from paraplegic patients. Cereb Cortex 2005;15(2):131–40.

    Article  PubMed  Google Scholar 

  94. Humphrey D, Mao H, Schaeffer E. Voluntary activation of ineffective cerebral motor areas in short- and long-term paraplegics. Soc Neurosci (abstract) 2000.

    Google Scholar 

  95. Topka H, Cohen L, Cole R, Hallett M. Reorganization of corticospinal pathways following spinal cord injury. Neurology 1991;41(8):1276–83.

    Article  PubMed  CAS  Google Scholar 

  96. Bruehlmeier M, Dietz V, Leenders K, Roelcke U, Missimer J, Curt A. How does the human brain deal with a spinal cord injury? Eur J Neurosci 1998;10(12):3918–22.

    Article  PubMed  CAS  Google Scholar 

  97. Mikulis D, Jurkiewicz M, McIlroy W, et al. Adaptation in the motor cortex following cervical spinal cord injury. Neurology 2002;58(5):794–801.

    Article  PubMed  CAS  Google Scholar 

  98. Turner J, Lee J, Martinez O, Medlin A, Schandler S, Cohen M. Somatotopy of the motor cortex after long-term spinal cord injury or amputation. IEEE Trans Neural Syst Rehabil Eng 2001;9(2):154–60.

    Article  PubMed  CAS  Google Scholar 

  99. Corbetta M, Burton H, Sinclair R, Conturo T, Akbudak E, McDonald J. Functional reorganization and stability of somatosensory-motor cortical topography in a tetraplegic subject with late recovery. Proc Natl Acad Sci USA 2002;99(26):17066–71.

    Article  PubMed  CAS  Google Scholar 

  100. Winchester P, McColl R, Querry R, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 2005;19(4):313–24.

    Article  PubMed  Google Scholar 

  101. Lacourse MG, Turner JA, Randolph-Orr E, Schandler SL, Cohen MJ. Cerebral and cerebellar sensorimotor plasticity following motor imagery-based mental practice of a sequential movement. J Rehabil Res Dev 2004;41(4):505–24.

    Article  PubMed  Google Scholar 

  102. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke 2006;37(7):1941–52.

    Article  PubMed  Google Scholar 

  103. Cramer SC, Orr EL, Cohen MJ, Lacourse MG. Effects of motor imagery training after chronic, complete spinal cord injury. Exp Brain Res 2007;177(2):233–42.

    Article  PubMed  Google Scholar 

  104. Kleim J, Kleim E, Cramer SC. Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation. Nat Protocols 2007;2:1675–84.

    Article  CAS  Google Scholar 

  105. Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9(6):735–7.

    Article  PubMed  CAS  Google Scholar 

  106. Newton JM, Ward NS, Parker GJ, et al. Non-invasive mapping of corticofugal fibres from multiple motor areas – relevance to stroke recovery. Brain 2006;129(Pt 7):1844–58.

    Article  PubMed  Google Scholar 

  107. Crafton K, Mark A, Cramer S. Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 2003;126(Pt 7):1650–9.

    Article  PubMed  Google Scholar 

  108. Heiss W, Emunds H, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke 1993;24(12):1784–8.

    Article  PubMed  CAS  Google Scholar 

  109. Cappa S, Perani D, Grassi F, et al. A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang 1997;56(1):55–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Cramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cramer, S.C. (2009). Application of fMRI to Monitor Motor Rehabilitation. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics