Skip to main content

fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

  • 2065 Accesses

Summary

fMRI is a technology with great promise as a tool to probe abnormalities of brain activity in neurodegenerative diseases. The detection of functional brain abnormalities may be useful, in the appropriate clinical context, for early diagnosis, differential diagnosis, or prognostication. Prediction of response to treatment or therapeutic monitoring may also be possible with fMRI. In addition, fMRI has the potential to provide a variety of scientific insights that may have clinical relevance, including compensatory hyperactivation of brain circuits or genetic modulation of functional brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trojanowski JQ. Protein mis-folding emerges as a “drugable” target for discovery of novel therapies for neuropsychiatric diseases of aging. Am J Geriatr Psychiatry 2004;12:134–135.

    PubMed  Google Scholar 

  2. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005;115:1449–1457.

    PubMed  CAS  Google Scholar 

  3. DeKosky ST, Marek K. Looking backward to move forward: early detection of neurodegenerative disorders. Science 2003;302:830–834.

    PubMed  CAS  Google Scholar 

  4. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002;298:789–791.

    PubMed  CAS  Google Scholar 

  5. Coleman P, Federoff H, Kurlan R. A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 2004;63:1155–1162.

    PubMed  Google Scholar 

  6. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173–177.

    PubMed  CAS  Google Scholar 

  7. Weiner HL, Lemere CA, Maron R, et al. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000;48:567–579.

    PubMed  CAS  Google Scholar 

  8. Lombardo JA, Stern EA, McLellan ME, et al. Amyloid-beta antibody treatment leads to rapid normalization of plaque-induced neuritic alterations. J Neurosci 2003;23:10879–10883.

    PubMed  CAS  Google Scholar 

  9. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–308.

    PubMed  CAS  Google Scholar 

  10. Grundman M, Petersen RC, Ferris SH, et al. Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 2004;61:59–66.

    PubMed  Google Scholar 

  11. Dubois B, Feldman HH, Jacova C, et al. Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007;6:734–746.

    PubMed  Google Scholar 

  12. Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability: an event-related functional-anatomic MRI study. Hippocampus 2007;17:1060–1070.

    PubMed  CAS  Google Scholar 

  13. Brewer JB, Zhao Z, Desmond JE, Glover GH, Gabrieli JD. Making memories: brain activity that predicts how well visual experience will be remembered. Science 1998;281:1185–1187.

    PubMed  CAS  Google Scholar 

  14. Wagner AD, Schacter DL, Rotte M, et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998;281:1188–1191.

    PubMed  CAS  Google Scholar 

  15. Kirchhoff BA, Wagner AD, Maril A, Stern CE. Prefrontal-temporal circuitry for episodic encoding and subsequent memory. J Neurosci 2000;20:6173–6180.

    PubMed  CAS  Google Scholar 

  16. Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C. Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 2003;126:43–56.

    PubMed  CAS  Google Scholar 

  17. Sperling R, Chua E, Cocchiarella A, et al. Putting names to faces: successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage 2003;20:1400–1410.

    PubMed  Google Scholar 

  18. Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999;8:102–108.

    PubMed  CAS  Google Scholar 

  19. Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 2003;23:986–993.

    PubMed  CAS  Google Scholar 

  20. Dickerson BC, Salat DH, Bates JF, et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 2004;56:27–35.

    PubMed  Google Scholar 

  21. Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Witter MP. FMRI of visual encoding: reproducibility of activation. Hum Brain Mapp 2000;9:156–164.

    PubMed  CAS  Google Scholar 

  22. Manoach DS, Halpern EF, Kramer TS, et al. Test–retest reliability of a functional MRI working memory paradigm in normal and schizophrenic subjects. Am J Psychiatry 2001;158:955–958.

    PubMed  CAS  Google Scholar 

  23. Sperling R, Greve D, Dale A, et al. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci USA 2002;99:455–460.

    PubMed  CAS  Google Scholar 

  24. Buckner RL, Snyder AZ, Sanders AL, Raichle ME, Morris JC. Functional brain imaging of young, nondemented, and demented older adults. J Cogn Neurosci 2000;12 Suppl 2:24–34.

    PubMed  Google Scholar 

  25. D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 2003;4:863–872.

    PubMed  Google Scholar 

  26. Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. J Int Neuropsychol Soc 1999;5:377–392.

    PubMed  CAS  Google Scholar 

  27. Johnson SC, Saykin AJ, Baxter LC, et al. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease. Neuroimage 2000;11:179–187.

    PubMed  CAS  Google Scholar 

  28. Grossman M, Koenig P, DeVita C, et al. Neural basis for verb processing in Alzheimer’s disease: an fMRI study. Neuropsychology 2003;17:658–674.

    PubMed  Google Scholar 

  29. Grossman M, Koenig P, Glosser G, et al. Neural basis for semantic memory difficulty in Alzheimer’s disease: an fMRI study. Brain 2003;126:292–311.

    PubMed  Google Scholar 

  30. Thulborn KR, Martin C, Voyvodic JT. Functional MR imaging using a visually guided saccade paradigm for comparing activation patterns in patients with probable Alzheimer’s disease and in cognitively able elderly volunteers. AJNR Am J Neuroradiol 2000;21:524–531.

    PubMed  CAS  Google Scholar 

  31. Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 1999;45:466–472.

    PubMed  CAS  Google Scholar 

  32. Rombouts SA, Barkhof F, Veltman DJ, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 2000;21:1869–1875.

    PubMed  CAS  Google Scholar 

  33. Kato T, Knopman D, Liu H. Dissociation of regional activation in mild AD during visual encoding: a functional MRI study. Neurology 2001;57:812–816.

    PubMed  CAS  Google Scholar 

  34. Machulda MM, Ward HA, Borowski B, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 2003;61:500–506.

    PubMed  CAS  Google Scholar 

  35. Sperling RA, Bates JF, Chua EF, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74:44–50.

    PubMed  CAS  Google Scholar 

  36. Rombouts SARB, Goekoop R, Stam CJ, Barkhof F, Scheltens P. Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage 2005; 26:1078–1085.

    PubMed  Google Scholar 

  37. Johnson SC, Baxter LC, Susskind-Wilder L, Connor DJ, Sabbagh MN, Caselli RJ. Hippocampal adaptation to face repetition in healthy lderly and mild cognitive impairment. Neuropsychologia 2004;42:980–989.

    PubMed  Google Scholar 

  38. Dickerson BC, Salat DH, Greve DN, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–411.

    PubMed  CAS  Google Scholar 

  39. Hamalainen A, Pihlajamaki M, Tanila H, et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol Aging 2007;28:1889–1903.

    PubMed  Google Scholar 

  40. Johnson SC, Schmitz TW, Moritz CH, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 2006;27:1604–1612.

    PubMed  CAS  Google Scholar 

  41. Petrella JR, Krishnan S, Slavin MJ, Tran TT, Murty L, Doraiswamy PM. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology 2006;240:177–186.

    PubMed  Google Scholar 

  42. Kircher T, Weis S, Freymann K, et al. Hippocampal activation in MCI patients is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 2007;78:812–818.

    PubMed  Google Scholar 

  43. Dickerson BC, Sperling RA. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 2008;46:1624–1635.

    PubMed  Google Scholar 

  44. Elsinger CL, Rao SM, Zimbelman JL, Reynolds NC, Blindauer KA, Hoffmann RG. Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J Int Neuropsychol Soc 2003;9:1088–1098.

    PubMed  Google Scholar 

  45. Haslinger B, Erhard P, Kampfe N, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain 2001;124:558–570.

    PubMed  CAS  Google Scholar 

  46. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003;23:6351–6356.

    PubMed  CAS  Google Scholar 

  47. Sauer J, ffytche DH, Ballard C, Brown RG, Howard R. Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 2006;129:1780–1788.

    PubMed  Google Scholar 

  48. Kim JS, Reading SA, Brashers-Krug T, Calhoun VD, Ross CA, Pearlson GD. Functional MRI study of a serial reaction time task in Huntington’s disease. Psychiatry Res 2004;131:23–30.

    PubMed  Google Scholar 

  49. Thiruvady DR, Georgiou-Karistianis N, Egan GF, et al. Functional connectivity of the prefrontal cortex in Huntington’s disease. J Neurol Neurosurg Psychiatry 2007;78:127–133.

    PubMed  CAS  Google Scholar 

  50. Tessitore A, Esposito F, Monsurro MR, et al. Subcortical motor plasticity in patients with sporadic ALS: an fMRI study. Brain Res Bull 2006;69:489–494.

    PubMed  CAS  Google Scholar 

  51. Wierenga CE, Bondi MW. Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease. Neuropsychol Rev 2007;17:127–143.

    PubMed  Google Scholar 

  52. DeKosky ST, Ikonomovic MD, Styren SD, et al. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 2002;51:145–155.

    PubMed  CAS  Google Scholar 

  53. Hashimoto M, Masliah E. Cycles of aberrant synaptic sprouting and neurodegeneration in Alzheimer’s and dementia with Lewy bodies. Neurochem Res 2003;28:1743–1756.

    PubMed  CAS  Google Scholar 

  54. Stern EA, Bacskai BJ, Hickey GA, Attenello FJ, Lombardo JA, Hyman BT. Cortical synaptic integration in vivo is disrupted by amyloid-beta plaques. J Neurosci 2004;24:4535–4540.

    PubMed  CAS  Google Scholar 

  55. Mueggler T, Sturchler-Pierrat C, Baumann D, Rausch M, Staufenbiel M, Rudin M. Compromised hemodynamic response in amyloid precursor protein transgenic mice. J Neurosci 2002;22:7218–7224.

    PubMed  CAS  Google Scholar 

  56. El Fakhri G, Kijewski MF, Johnson KA, et al. MRI-guided SPECT perfusion measures and volumetric MRI in prodromal Alzheimer disease. Arch Neurol 2003;60:1066–1072.

    PubMed  Google Scholar 

  57. Davis TL, Kwong KK, Weisskoff RM, Rosen BR. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 1998;95:1834–1839.

    PubMed  CAS  Google Scholar 

  58. Cohen ER, Ugurbil K, Kim SG. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 2002;22:1042–1053.

    PubMed  CAS  Google Scholar 

  59. Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology 1996;46:692–700.

    PubMed  CAS  Google Scholar 

  60. Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–1870.

    PubMed  CAS  Google Scholar 

  61. Stern Y, Moeller JR, Anderson KE, et al. Different brain networks mediate task performance in normal aging and AD: defining compensation. Neurology 2000;55:1291–1297.

    PubMed  CAS  Google Scholar 

  62. Gur RC, Gur RE, Skolnick BE, et al. Effects of task difficulty on regional cerebral blood flow: relationships with anxiety and performance. Psychophysiology 1988;25:392–399.

    PubMed  CAS  Google Scholar 

  63. Grasby PM, Frith CD, Friston KJ, et al. A graded task approach to the functional mapping of brain areas implicated in auditory-verbal memory. Brain 1994;117:1271–1282.

    PubMed  Google Scholar 

  64. Grady CL. Age-related changes in cortical blood flow activation during perception and memory. Ann N Y Acad Sci 1996;777:14–21.

    PubMed  CAS  Google Scholar 

  65. Rypma B, D’Esposito M. The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. Proc Natl Acad Sci USA 1999;96:6558–6563.

    PubMed  CAS  Google Scholar 

  66. Kirchhoff BA, Buckner RL. Functional-anatomic correlates of individual differences in memory. Neuron 2006;51:263–274.

    PubMed  CAS  Google Scholar 

  67. Monchi O, Petrides M, Doyon J, Postuma RB, Worsley K, Dagher A. Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 2004;24:702–710.

    PubMed  CAS  Google Scholar 

  68. Helmich RC, de Lange FP, Bloem BR, Toni I. Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia 2007;45:2201–2215.

    PubMed  Google Scholar 

  69. Georgiou-Karistianis N, Sritharan A, Farrow M, et al. Increased cortical recruitment in Huntington’s disease using a Simon task. Neuropsychologia 2007;45:1791–1800.

    PubMed  Google Scholar 

  70. Stanton BR, Williams VC, Leigh PN, et al Altered cortical activation during a motor task in ALS: evidence for involvement of central pathways. J Neurol 2007;254;1260–1267.

    PubMed  Google Scholar 

  71. Schoenfeld MA, Tempelmann C, Gaul C, et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 2005;252:944–952.

    PubMed  Google Scholar 

  72. Drummond SP, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB. Altered brain response to verbal learning following sleep deprivation. Nature 2000;403:655–657.

    PubMed  CAS  Google Scholar 

  73. Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 2002;17:1394–1402.

    PubMed  Google Scholar 

  74. Carey JR, Kimberley TJ, Lewis SM, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125:773–788.

    PubMed  Google Scholar 

  75. Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain 2002;125:2731–2742.

    PubMed  Google Scholar 

  76. Reddy H, Narayanan S, Arnoutelis R, et al. Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 2000;123:2314–2320.

    PubMed  Google Scholar 

  77. Morgen K, Kadom N, Sawaki L, et al. Training-dependent plasticity in patients with multiple sclerosis. Brain 2004;127:2506–2517.

    PubMed  Google Scholar 

  78. McAllister TW, Saykin AJ, Flashman LA, et al. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology 1999;53:1300–1308.

    PubMed  CAS  Google Scholar 

  79. Ernst T, Chang L, Jovicich J, Ames N, Arnold S. Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology 2002;59:1343–1349.

    PubMed  CAS  Google Scholar 

  80. Desmond JE, Chen SH, DeRosa E, Pryor MR, Pfefferbaum A, Sullivan EV. Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage 2003;19:1510–1520.

    PubMed  Google Scholar 

  81. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 2003;160:2209–2215.

    PubMed  Google Scholar 

  82. Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 2004;44:181–193.

    PubMed  CAS  Google Scholar 

  83. Winterer G, Hariri AR, Goldman D, Weinberger DR. Neuroimaging and human genetics. Int Rev Neurobiol 2005;67:325–383.

    PubMed  Google Scholar 

  84. Hariri AR, Weinberger DR. Functional neuroimaging of genetic variation in serotonergic neurotransmission. Genes Brain Behav 2003;2:341–349.

    PubMed  CAS  Google Scholar 

  85. Saunders AM. Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses. J Neuropathol Exp Neurol 2000;59:751–758.

    PubMed  CAS  Google Scholar 

  86. Smith CD, Andersen AH, Kryscio RJ, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999;53:1391–1396.

    PubMed  CAS  Google Scholar 

  87. Smith CD, Andersen AH, Kryscio RJ, et al. Women at risk for AD show increased parietal activation during a fluency task. Neurology 2002;58:1197–1202.

    PubMed  CAS  Google Scholar 

  88. Bookheimer SY, Strojwas MH, Cohen MS, et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 2000;343:450–456.

    PubMed  CAS  Google Scholar 

  89. Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 2005;64:501–508.

    PubMed  Google Scholar 

  90. Johnson SC, Schmitz TW, Trivedi MA, et al. The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. J Neurosci 2006;26:6069–6076.

    PubMed  CAS  Google Scholar 

  91. Mondadori CR, Buchmann A, Mustovic H, et al. Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain 2006;129:2908–2922.

    PubMed  Google Scholar 

  92. Reading SA, Dziorny AC, Peroutka LA, et al. Functional brain changes in presymptomatic Huntington’s disease. Ann Neurol 2004;55:879–883.

    PubMed  Google Scholar 

  93. Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol 2002;51:491–498.

    PubMed  Google Scholar 

  94. Rombouts SA, van Swieten JC, Pijnenburg YA, Goekoop R, Barkhof F, Scheltens P. Loss of frontal fMRI activation in early frontotemporal dementia compared to early AD. Neurology 2003;60:1904–1908.

    PubMed  CAS  Google Scholar 

  95. Miller S, Bates J, Blacker D, Sperling RA, Dickerson BC. Hippocampal activation in MCI predicts subsequent cognitive decline. In: International Conference on Alzheimer’s Disease, Madrid, Spain, 2006.

    Google Scholar 

  96. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA 2001;98:676–682.

    PubMed  CAS  Google Scholar 

  97. Lustig C, Snyder AZ, Bhakta M, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 2003;100:14504–14509.

    PubMed  CAS  Google Scholar 

  98. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004;101:4637–4642.

    PubMed  CAS  Google Scholar 

  99. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 2005;26:231–239.

    PubMed  Google Scholar 

  100. Celone KA, Calhoun VD, Dickerson BC, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 2006;26:10222–10231.

    PubMed  CAS  Google Scholar 

  101. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005;25:7709–7717.

    PubMed  CAS  Google Scholar 

  102. Leslie RA, James MF. Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 2000;21:314–318.

    PubMed  CAS  Google Scholar 

  103. Thiel CM, Henson RN, Dolan RJ. Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMRI study. Neuropsychopharmacology 2002;27:282–292.

    PubMed  CAS  Google Scholar 

  104. Rombouts SA, Barkhof F, Van Meel CS, Scheltens P. Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2002;73:665–671.

    PubMed  CAS  Google Scholar 

  105. Saykin AJ, Wishart HA, Rabin LA, et al. Cholinergic enhancement of frontal lobe activity in mild cognitive impairment. Brain 2004;127:1574–1583.

    PubMed  Google Scholar 

  106. Goekoop R, Rombouts SA, Jonker C, et al. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage 2004;23:1450–1459.

    PubMed  Google Scholar 

  107. Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C. Pharmacologically modulated fMRI – cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 2003;126:451–461.

    PubMed  CAS  Google Scholar 

  108. Mattay VS, Tessitore A, Callicott JH, et al. Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Ann Neurol 2002;51:156–164.

    PubMed  CAS  Google Scholar 

  109. Tessitore A, Hariri AR, Fera F, et al. Dopamine modulates the response of the human amygdala: a study in Parkinson’s disease. J Neurosci 2002;22:9099–9103.

    PubMed  CAS  Google Scholar 

  110. Breiter HC, Gollub RL, Weisskoff RM, et al. Acute effects of cocaine on human brain activity and emotion. Neuron 1997;19:591–611.

    PubMed  CAS  Google Scholar 

  111. Kalin NH, Davidson RJ, Irwin W, et al Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine. J Clin Psychiatry 1997;58 Suppl 16:32–39.

    PubMed  Google Scholar 

  112. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci USA 1999;96:13432–13437.

    PubMed  CAS  Google Scholar 

  113. Fu CH, Williams SC, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 2004;61:877–889.

    PubMed  Google Scholar 

  114. Davidson RJ, Irwin W, Anderle MJ, Kalin NH. The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry 2003;160:64–75.

    PubMed  Google Scholar 

  115. Bertolino A, Caforio G, Blasi G, et al. Interaction of COMT (Val(108/158)Met) genotype and olanzapine treatment on prefrontal cortical function in patients with schizophrenia. Am J Psychiatry 2004;161:1798–1805.

    PubMed  Google Scholar 

  116. Arantes PR, Cardoso EF, Barreiros MA, et al. Performing functional magnetic resonance imaging in patients with Parkinson’s disease treated with deep brain stimulation. Mov Disord 2006;21:1154–1162.

    PubMed  Google Scholar 

  117. Phillips MD, Baker KB, Lowe MJ, et al. Parkinson disease: pattern of functional MR imaging activation during deep brain stimulation of subthalamic nucleus – initial experience. Radiology 2006;239:209–216.

    PubMed  Google Scholar 

  118. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984;141:1356–1364.

    PubMed  CAS  Google Scholar 

  119. Schneider LS, Olin JT, Doody RS, et al Validity and reliability of the Alzheimer’s Disease Cooperative Study – Clinical Global Impression of Change. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord 1997;11 Suppl 2:S22–S32.

    PubMed  Google Scholar 

  120. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 2006;27:1372–1384.

    PubMed  CAS  Google Scholar 

  121. Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 2002;1:13–21.

    PubMed  Google Scholar 

  122. Knopman DS, DeKosky ST, Cummings JL, et al Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56:1143–1153.

    PubMed  CAS  Google Scholar 

  123. Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–1554.

    PubMed  CAS  Google Scholar 

  124. O’Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment. Lancet Neurol 2003;2:89–98.

    PubMed  Google Scholar 

  125. McKeith IG, Dickson DW, Lowe J, et al Diagnosis and management of dementia with Lewy bodies. Third report of the DLB consortium. Neurology 2005;65:1863–1872.

    PubMed  CAS  Google Scholar 

  126. Neary D, Snowden J, Mann D. Frontotemporal dementia. Lancet Neurol 2005;4:771–780.

    PubMed  Google Scholar 

  127. Bobholz JA, Rao SM, Saykin AJ, Pliskin N. Clinical use of functional magnetic resonance imaging: reflections on the new CPT codes. Neuropsychol Rev 2007;17:189–191.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford C. Dickerson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dickerson, B.C. (2009). fMRI in Neurodegenerative Diseases: From Scientific Insights to Clinical Applications. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics