Skip to main content

fMRI in Cerebrovascular Disorders

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

Stroke is a major cause of long-term disability worldwide. One of the key factors underpinning recovery of function is reorganization of surviving neural networks. Noninvasive techniques such as fMRI allow this reorganization to be studied in humans. However, the design of experiments involving patients with impairment requires careful consideration and is often constrained. Difficulty with some tasks can lead to a number of performance confounds, and so tasks and task parameters that avoid or minimize this should be selected. Furthermore, when studying patients with cerebrovascular disease, it is important to consider the possibility that the blood oxygen level dependent signal may be altered and affect interpretation of results. Despite these potential problems, careful experimental design can provide real insights into system-level reorganization after stroke and how it is related to functional recovery. Currently, results suggest that functionally relevant reorganization does occur in cerebral networks in human stroke patients. For example, it is apparent that initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres. This reliance on nonprimary motor output pathways is unlikely to support full recovery, but improved efficiency of the surviving networks is associated with behavioral gains. This reorganization can only occur in structurally and functionally intact brain regions. Understanding the dynamic process of system-level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman C, Rice D, Sung HY. Persons with chronic conditions. Their prevalence and costs. JAMA 1996;276(18):1473–1479.

    Article  PubMed  CAS  Google Scholar 

  2. Office of Population Censuses and Surveys. OPCS surveys of disability in Great Britain. I. The prevalence of disability among adults. London: HMSO. 1988.

    Google Scholar 

  3. Wade DT, Hewer RL. Epidemiology of some neurological diseases with special reference to work load on the NHS. Int Rehabil Med 1987;8(3):129–137.

    PubMed  CAS  Google Scholar 

  4. Wade DT. Measuring arm impairment and disability after stroke. Int Disabil Stud 1989;11(2):89–92.

    Article  PubMed  CAS  Google Scholar 

  5. Nichols-Larsen DS, Clark PC, Zeringue A, Greenspan A, Blanton S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 2005;36(7):1480–1484.

    Article  PubMed  Google Scholar 

  6. Wyller TB, Sveen U, Sodring KM, Pettersen AM, Bautz-Holter E. Subjective well-being one year after stroke. Clin Rehabil 1997;11(2):139–145.

    Article  PubMed  CAS  Google Scholar 

  7. Stroke Unit Trialists’ Collaboration. Organised inpatient (stroke unit) care for stroke (Cochrane Review). In: The Cochrane Library, Issue 2.Oxford: Update Software. 2000.

    Google Scholar 

  8. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004;61(12):1844–1848.

    Article  PubMed  Google Scholar 

  9. The Academy of Medical Sciences. Restoring neurological function: putting the neurosciences to work in neurorehabilitation. London: Academy of Medical Sciences. 2004.

    Google Scholar 

  10. Loubinoux I, Carel C, Pariente J, Dechaumont S, Albucher JF, Marque P et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 2003;20(4):2166–2180.

    Article  PubMed  Google Scholar 

  11. Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J et al. A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 2004;23(3):827–839.

    Article  PubMed  Google Scholar 

  12. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Longitudinal changes in cerebral response to proprioceptive input in individual patients after stroke: an FMRI study. Neurorehabil Neural Repair 2006;20(3):398–405.

    Article  PubMed  Google Scholar 

  13. Lee A, Kannan V, Hillis AE. The contribution of neuroimaging to the study of language and aphasia. Neuropsychol Rev 2006;16(4):171–183.

    Article  PubMed  Google Scholar 

  14. Price CJ, Crinion J. The latest on functional imaging studies of aphasic stroke. Curr Opin Neurol 2005;18(4):429–434.

    Article  PubMed  Google Scholar 

  15. Wise RJ. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Br Med Bull 2003;65:95–119.

    Article  PubMed  Google Scholar 

  16. Buxton RB. An introduction to functional magnetic resonance imaging: principles and techniques. Cambridge: Cambridge University Press, 2002.

    Google Scholar 

  17. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999;354(1387):1155–1163.

    Article  PubMed  CAS  Google Scholar 

  18. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999;283(5401):496–497.

    Article  PubMed  CAS  Google Scholar 

  19. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5(5):347–360.

    Article  PubMed  CAS  Google Scholar 

  20. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci 2002;25(12):621–625.

    Article  PubMed  CAS  Google Scholar 

  21. Friston KJ, Josephs O, Rees G, Turner R. Nonlinear event-related responses in fMRI. Magn Reson Med 1998;39(1):41–52.

    Article  PubMed  CAS  Google Scholar 

  22. Newton J, Sunderland A, Butterworth SE, Peters AM, Peck KK, Gowland PA. A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 2002;33(12):2881–2887.

    Article  PubMed  CAS  Google Scholar 

  23. Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptive reorganization? Stroke 2001;32(5):1134–1139.

    Article  PubMed  CAS  Google Scholar 

  24. Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB. Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol 2002;23(7):1222–1228.

    PubMed  Google Scholar 

  25. Hamzei F, Knab R, Weiller C, Rother J. The influence of extra- and intracranial artery disease on the BOLD signal in fMRI. Neuroimage 2003;20(2):1393–1399.

    Article  PubMed  Google Scholar 

  26. Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M et al Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 2004;127(Pt 1):99–110.

    Article  PubMed  CAS  Google Scholar 

  27. Rother J, Knab R, Hamzei F, Fiehler J, Reichenbach JR, Buchel C et al. Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. Neuroimage 2002;15(1):98–102.

    Article  PubMed  Google Scholar 

  28. Krainik A, Hund-Georgiadis M, Zysset S, von Cramon DY. Regional impairment of cerebrovascular reactivity and BOLD signal in adults after stroke. Stroke 2005;36(6):1146–1152.

    Article  PubMed  Google Scholar 

  29. Murata Y, Sakatani K, Hoshino T, Fujiwara N, Kano T, Nakamura S et al. Effects of cerebral ischemia on evoked cerebral blood oxygenation responses and BOLD contrast functional MRI in stroke patients. Stroke 2006;37(10):2514–2520.

    Article  PubMed  Google Scholar 

  30. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003;126(Pt 6):1430–1448.

    Article  PubMed  CAS  Google Scholar 

  31. Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 2006;129(Pt 3):809–819.

    Article  PubMed  Google Scholar 

  32. Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ et al. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 2007;25(6):1865–1873.

    Article  PubMed  Google Scholar 

  33. D’Esposito M, Zarahn E, Aguirre GK, Rypma B. The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 1999;10(1):6–14.

    Article  PubMed  Google Scholar 

  34. Ward NS, Swayne OB, Newton JM. Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging 2008;29(9):1434–1446.

    Article  PubMed  Google Scholar 

  35. Pollmann S, Dove A, Yves von Cramon D, Wiggins CJ. Event-related fMRI: comparison of conditions with varying BOLD overlap. Hum Brain Mapp 2000;9(1):26–37.

    Article  PubMed  CAS  Google Scholar 

  36. Wager TD, Vazquez A, Hernandez L, Noll DC. Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies. NeuroImage 2005;25(1):206–218.

    Article  PubMed  Google Scholar 

  37. Kim JA, Eliassen JC, Sanes JN. Movement quantity and frequency coding in human motor areas. J Neurophysiol 2005;94(4):2504–2511.

    Article  PubMed  Google Scholar 

  38. Cao Y, D’Olhaberriague L, Vikingstad EM, Levine SR, Welch KM. Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 1998;29(1):112–122.

    Article  PubMed  CAS  Google Scholar 

  39. Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991;29(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  40. Cramer SC, Nelles G, Benson RR, Kaplan JD, Parker RA, Kwong KK et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28(12):2518–2527.

    Article  PubMed  CAS  Google Scholar 

  41. Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992;31(5):463–472.

    Article  PubMed  CAS  Google Scholar 

  42. Weiller C, Ramsay SC, Wise RJ, Friston KJ, Frackowiak RS. Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993;33(2):181–189.

    Article  PubMed  CAS  Google Scholar 

  43. Strick PL. Anatomical organization of multiple motor areas in the frontal lobe: implications for recovery of function. Adv Neurol 1988;47:293–312.

    PubMed  CAS  Google Scholar 

  44. Porter R, Lemon RN. Corticospinal function and voluntary movement. Oxford, UK: Oxford University Press. 1993.

    Google Scholar 

  45. Dum RP, Strick PL. Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 1996;16(20):6513–6525.

    PubMed  CAS  Google Scholar 

  46. Rouiller EM, Moret V, Tanne J, Boussaoud D. Evidence for direct connections between the hand region of the supplementary motor area and cervical motoneurons in the macaque monkey. Eur J Neurosci 1996;8(5):1055–1059.

    Article  PubMed  CAS  Google Scholar 

  47. Calautti C, Leroy F, Guincestre JY, Baron JC. Dynamics of motor network overactivation after striatocapsular stroke: a longitudinal PET study using a fixed-performance paradigm. Stroke 2001;32(11):2534–2542.

    Article  PubMed  CAS  Google Scholar 

  48. Calautti C, Leroy F, Guincestre JY, Baron JC. Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage 2003;19(4):1650–1654.

    Article  PubMed  Google Scholar 

  49. Cramer SC, Shah R, Juranek J, Crafton KR, Le V. Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 2006;37(1):111–115.

    Article  PubMed  Google Scholar 

  50. Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002;33(6):1610–1617.

    Article  PubMed  CAS  Google Scholar 

  51. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 2002;99(22):14518–14523.

    Article  PubMed  CAS  Google Scholar 

  52. Seitz RJ, Hoflich P, Binkofski F, Tellmann L, Herzog H, Freund HJ. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch Neurol 1998;55(8):1081–1088.

    Article  PubMed  CAS  Google Scholar 

  53. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. The influence of time after stroke on brain activations during a motor task. Ann Neurol 2004;55(6):829–834.

    Article  PubMed  Google Scholar 

  54. Dancause N, Barbay S, Frost SB, Plautz EJ, Stowe AM, Friel KM et al. Ipsilateral connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2006;495(4):374–390.

    Article  PubMed  Google Scholar 

  55. Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ. Interhemispheric connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2007;505(6):701–715.

    Article  PubMed  Google Scholar 

  56. Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 1991;11(3):667–689.

    PubMed  CAS  Google Scholar 

  57. He SQ, Dum RP, Strick PL. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 1993;13(3):952–980.

    PubMed  CAS  Google Scholar 

  58. He SQ, Dum RP, Strick PL. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 1995;15(5 Pt 1):3284–3306.

    PubMed  CAS  Google Scholar 

  59. Boudrias MH, Belhaj-Saif A, Park MC, Cheney PD. Contrasting properties of motor output from the supplementary motor area and primary motor cortex in rhesus macaques. Cereb Cortex 2006;16(5):632–638.

    Article  PubMed  Google Scholar 

  60. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 2002;12(3):281–296.

    Article  PubMed  CAS  Google Scholar 

  61. Dettmers C, Fink GR, Lemon RN, Stephan KM, Passingham RE, Silbersweig D et al. Relation between cerebral activity and force in the motor areas of the human brain. J Neurophysiol 1995;74(2):802–815.

    PubMed  CAS  Google Scholar 

  62. Thickbroom GW, Phillips BA, Morris I, Byrnes ML, Sacco P, Mastaglia FL. Differences in functional magnetic resonance imaging of sensorimotor cortex during static and dynamic finger flexion. Exp Brain Res 1999;126(3):431–438.

    Article  PubMed  CAS  Google Scholar 

  63. Ward NS, Frackowiak RS. Age-related changes in the neural correlates of motor performance. Brain 2003;126(Pt 4):873–888.

    Article  PubMed  CAS  Google Scholar 

  64. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 2004;127(Pt 4):747–758.

    Article  PubMed  Google Scholar 

  65. Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion. J Neurosci 2006;26(22):6096–6102.

    Article  PubMed  CAS  Google Scholar 

  66. Zemke AC, Heagerty PJ, Lee C, Cramer SC. Motor cortex organization after stroke is related to side of stroke and level of recovery. Stroke 2003;34(5):e23–e28.

    Article  PubMed  Google Scholar 

  67. Crafton KR, Mark AN, Cramer SC. Improved understanding of cortical injury by incorporating measures of functional anatomy. Brain 2003;126(Pt 7):1650–1659.

    Article  PubMed  Google Scholar 

  68. Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000;31(3):656–661.

    Article  PubMed  CAS  Google Scholar 

  69. Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain 2002;125(Pt 7):1544–1557.

    Article  PubMed  CAS  Google Scholar 

  70. Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003;126(Pt 11):2476–2496.

    Article  PubMed  CAS  Google Scholar 

  71. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R et al. BDNF val66met polymorphism is associated w ith modified experience-dependent plasticity in human motor cortex. Nat Neurosci 2006;9(6):735–737.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick S. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ward, N.S. (2009). fMRI in Cerebrovascular Disorders. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics