Skip to main content

fMRI of the Central Auditory System

  • Protocol
  • First Online:
fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

Over the years, blood oxygen level-dependent (BOLD) fMRI has made important contributions to the understanding of central auditory processing in humans. Although there are significant technical challenges to overcome in the case of auditory fMRI, the unique methodological advantage of fMRI as an indicator of population neural activity lies in its spatial precision. It can be used to examine the neural basis of auditory representation at a number of spatial scales, from the micro-anatomical scale of population assemblies to the macro-anatomical scale of cortico-cortical circuits. The spatial resolution of fMRI is maximised in the case of mapping individual brain activity, and here it has been possible to demonstrate known organisational features of the auditory system that have hitherto been possible only using invasive electrophysiological recording methods. Frequency coding in the primary auditory cortex is one such example that we shall discuss in this chapter. Of course, non-invasive procedures for neuroscience are the ultimate aim and as the field moves towards this goal by recording in awake, behaving animals so human neuroimaging techniques will be increasingly relied upon to provide an interpretive link between animal neurophysiology at the multi-unit level and the operation of larger neuronal assemblies, as well as the mechanisms of auditory perception itself. For example, the neural effects of intentional behaviour on stimulus-driven coding have been explored both in animals, using electrophysiological techniques, and in humans, using fMRI. While the feature-specific effects of selective attention are well established in the visual cortex, the effect of auditory attention in the auditory cortex has generally been examined at a very coarse spatial scale. Ongoing research in our laboratory has started to address this question and here we present preliminary evidence for frequency-specific effects of attentional enhancement in the human auditory cortex. We end with a brief discussion of several future directions for auditory fMRI research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmer AR, Bullock DC, Chambers JD. A high-output, high-quality sound system for use in auditory fMRI. Neuroimage 1998;7:S357.

    Google Scholar 

  2. Chou CK, McDougall JA, Chan KW. Absence of radiofrequency heating from auditory implants during magnetic-resonance imaging. Bioelectromagnetics 1995;16(5):307–316.

    Article  PubMed  CAS  Google Scholar 

  3. Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou CK. Evaluation of MRI compatibility of the modified nucleus multichannel auditory brainstem and cochlear implants. Am J Otol 1996;17(5):724–729.

    PubMed  CAS  Google Scholar 

  4. Shellock FG, Morisoli S, Kanal E. MR procedures and biomedical implants, materials, and devices – 1993 update. Radiology 1993;189(2):587–599.

    PubMed  CAS  Google Scholar 

  5. Weber BP, Neuburger J, Battmer RD, Lenarz T. Magnetless cochlear implant: Relevance of adult experience for children. Am J Otol 1997;18(6):S50–S51.

    PubMed  CAS  Google Scholar 

  6. Wild DC, Head K, Hall DA. Safe magnetic resonance scanning of patients with metallic middle ear implants. Clin Otolaryngol 2006;31(6):508–510.

    Article  PubMed  CAS  Google Scholar 

  7. Giraud AL, Truy E, Frackowiak R. Imaging plasticity in cochlear implant patients. Audiol Neurootol 2001;6(6):381–393.

    Article  PubMed  CAS  Google Scholar 

  8. Moelker A, Piotr A, Wielopolski, Pattynama PM. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels. MAGMA 2003;16:52–55.

    Article  PubMed  Google Scholar 

  9. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-level measurements and calculations of safe noise dosage during fMRI at 3T. J Magn Reson Imaging 2000;12:157–163.

    Article  PubMed  CAS  Google Scholar 

  10. Ravicz ME, Melcher JR. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: Examination of noise conduction through the ear canal, head, and body. J Acoust Soc Am 2001;109(1):216–231.

    Article  PubMed  CAS  Google Scholar 

  11. Price DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI. Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging 2001;13(2):288–293.

    Article  PubMed  CAS  Google Scholar 

  12. Hedeen RA, Edelstein WA. Characterization and prediction of gradient acoustic noise in MR imagers. Magn Reson Med 1997;37(1):7–10.

    Article  PubMed  CAS  Google Scholar 

  13. Hennel F, Girard F, Loenneker T. “Silent” MRI with soft gradient pulses. Magn Reson Med 1999;42:6–10.

    Article  PubMed  CAS  Google Scholar 

  14. Brechmann A, Baumgart F, Scheich H. Sound-level-dependent representation of frequency modulations in human auditory cortex: A low-noise fMRI study. J Neurophysiol 2002;87:423–433.

    PubMed  Google Scholar 

  15. Sumby WH, Pollack I. Visual contribution to speech intelligibility in noise. J Acoust Soc Am 1954;26(2):212–215.

    Article  Google Scholar 

  16. Assmann P, Summerfield Q. Perception of speech under adverse conditions. In: S. Greenberg, W. A. Ainsworth, A. N. Popper, R. R. Fay, eds. Speech processing in the auditory system. New York: Springer; 2004:231–308.

    Chapter  Google Scholar 

  17. Healy EW, Moser DC, Morrow-Odom KL, Hall DA, Fridriksson J. Speech perception in MRI scanner noise by persons with aphasia. J Speech Lang Hear Res 2007;50:323–334.

    Article  PubMed  Google Scholar 

  18. Harms MP, Melcher JR. Sound repetition rate in the human auditory pathway: Representations in the waveshape and amplitude of fMRI activation. J Neurophysiol 2002;88:1433–1450.

    PubMed  Google Scholar 

  19. Chambers JD, Akeroyd MA, Summerfield AQ, Palmer AR. Active control of the volume acquisition noise in functional magnetic resonance imaging: Method and psychoacoustical evaluation. J Acoust Soc Am 2001;110(6):3041–3054.

    Article  PubMed  CAS  Google Scholar 

  20. Hall DA, Chambers J, Foster J, Akeroyd MA, Coxon R, Palmer AR. Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging. The Journal of the Acoustical Society of America 2009;125(1):347–359.

    Article  PubMed  Google Scholar 

  21. Hall DA, Haggard MP, Akeroyd MA, Palmer AR, Summerfield AQ, Elliott MR, Gurney EM, Bowtell RW. ‘Sparse’ temporal sampling in auditory fMRI. Hum Brain Mapp 1999;7:213–223.

    Article  PubMed  CAS  Google Scholar 

  22. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RM, Hyde JS. Functional MRI of brain activation induced by scanner acoustic noise. Magn Reson Med 1998;39:410–416.

    Article  PubMed  CAS  Google Scholar 

  23. Bilecen D, Scheffler K, Schmid N, Tschopp K, Seelig J. Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI. Hear Res 1998;126:19–27.

    Article  PubMed  CAS  Google Scholar 

  24. Hall DA, Summerfield AQ, Gonçalves MS, Foster JR, Palmer AR, Bowtell RW. Time-course of the auditory BOLD response to scanner noise. Magn Reson Med 2000;43:601–606.

    Article  PubMed  CAS  Google Scholar 

  25. Shah NJ, Jäncke L, Grosse-Ruyken M-L, Müller-Gärtner HW. Influence of acoustic masking noise in fMRI of the auditory cortex during phonetic discrimination. J Magn Reson Imaging 1999;9(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  26. Talavage TM, Edmister WB, Ledden PJ, Weisskoff RM. Quantitative assessment of auditory cortex responses induced by imager acoustic noise. Hum Brain Mapp 1999;7(2):79–88.

    Article  PubMed  CAS  Google Scholar 

  27. Elliott MR, Bowtell RW, Morris PG. The effect of scanner sound in visual, motor, and auditory functional MRI. Magn Reson Med 1999;41(6):1230–1235.

    Article  PubMed  CAS  Google Scholar 

  28. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditory cortex imaging using clustered volume acquisitions. Hum Brain Mapp 1999;7:89–97.

    Article  PubMed  CAS  Google Scholar 

  29. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 2003;40(4):859–869.

    Article  PubMed  CAS  Google Scholar 

  30. Hall DA, Haggard MP, Akeroyd MA, Summerfield AQ, Palmer AR, Elliott MR, Bowtell RW. Modulation and task effects in auditory processing measured using fMRI. Hum Brain Mapp 2000;10(3):107–119.

    Article  PubMed  CAS  Google Scholar 

  31. Hall DA, Haggard MP, Summerfield AQ, Akeroyd MA, Palmer AR, Bowtell RW. Functional magnetic resonance imaging measurements of sound-level encoding in the absence of background scanner noise. J Acoust Soc Am 2001;109(4):1559–1570.

    Article  PubMed  CAS  Google Scholar 

  32. Hart HC, Palmer AR, Hall DA. Different areas of human non-primary auditory cortex are activated by sounds with spatial and nonspatial properties. Hum Brain Mapp 2004;21:178–190.

    Article  PubMed  Google Scholar 

  33. Langers DRM, Backes WH, Van Dijk P. Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 2007;34:264–273.

    Article  PubMed  Google Scholar 

  34. Schwarzbauer C, Davis MH, Rodd JM, Johnsrude I. Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. Neuroimage 2006;29(3):774–782.

    Article  PubMed  Google Scholar 

  35. Bregman AS. Auditory scene analysis: The perceptual organisation of sound. MIT, Cambridge, MA; 1990.

    Google Scholar 

  36. Fishman YI, Arezzo JC, Steinschneider M. Auditory stream segregation in monkey auditory cortex: Effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 2004;116(3):1656–1670.

    Article  PubMed  Google Scholar 

  37. Fishman YI, Reser DH, Arezzo JC, Steinschneider M. Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hear Res 2001;151:167–187.

    Article  PubMed  CAS  Google Scholar 

  38. Brosch M, Schreiner CE. Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 1997;77:923–943.

    PubMed  CAS  Google Scholar 

  39. Bartlett EL, Wang X. Long-lasting modulation by stimulus context in primate auditory cortex. J Neurophysiol 2005;94:83–104.

    Article  PubMed  Google Scholar 

  40. Harms MP, Guinan JJ, Sigalovsky IS, Melcher JR. Short-term sound temporal envelope characteristics determine multisecond time patterns of activity in human auditory cortex as shown by fMRI. J Neurophysiol 2005;93:210–222.

    Article  PubMed  Google Scholar 

  41. Palmer AR, Hall DA, Sumner C, Barrett DJK, Jones S, Nakamoto K, Moore DR. Some investigations into non-passive listening. Hear Res 2007;229:148–157.

    Article  PubMed  CAS  Google Scholar 

  42. Hall DA, Edmondson-Jones M, Fridriksson J. Periodicity and frequency coding in human auditory cortex. Eur J Neurosci 2006;24:3601–3610.

    Article  PubMed  Google Scholar 

  43. Hall DA, Johnsrude IS, Haggard MP, Palmer AR, Akeroyd MA, Summerfield AQ. Spectral and temporal processing in human auditory cortex. Cereb Cortex 2002;12:140–149.

    Article  PubMed  Google Scholar 

  44. Hart HC, Hall DA, Palmer AR. The sound-level-dependent growth in the extent of fMRI activation in Heschl’s gyrus is different for low- and high-frequency tones. Hear Res 2003;179(1–2):104–112.

    Article  PubMed  Google Scholar 

  45. Von Békésy G. The variations of phase along the basilar membrane with sinusoidal vibrations. J Acoust Soc Am 1947;19:452–460.

    Article  Google Scholar 

  46. Kosaki H, Hashikawa T, He J, Jones EG. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 1997;386:304–316.

    Article  PubMed  CAS  Google Scholar 

  47. Merzenich MM, Brugge JF. Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res 1973;50:275–296.

    Article  PubMed  CAS  Google Scholar 

  48. Petkov CL, Kayser C, Augath M, Logothetis NK. Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol 2006;4(7):213–226.

    Article  Google Scholar 

  49. Hall DA, Hart HC, Johnsrude IS. Relationships between human auditory cortical structure and function. Audiol Neurootol 2003;8(1):1–18.

    Article  PubMed  Google Scholar 

  50. Schönwiesner M, Von Cramon DY, Rubsamen R, Is it tonotopy after all?Neuroimage 2002;17:1144–1161.

    Article  PubMed  Google Scholar 

  51. Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR. Frequency-depen-dent responses exhibited by multiple regions in human auditory cortex. Hear Res 2000;150:225–244.

    Article  PubMed  CAS  Google Scholar 

  52. Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 2004;91:1282–1296.

    Article  PubMed  Google Scholar 

  53. Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci 2000;23(1):315–341.

    Article  PubMed  CAS  Google Scholar 

  54. Maunsell JHR, Treue S. Feature-based attention in visual cortex. Trends Neurosci 2006;29(6):317–322.

    Article  PubMed  CAS  Google Scholar 

  55. Scholl BJ. Objects and attention: The state of the art. Cognition 2001;80(1–2):1–46.

    Article  PubMed  CAS  Google Scholar 

  56. Griffiths TD, Warren JD,. What is an auditory object?Nat Rev Neurosci 2004;5(11):887–892.

    Article  PubMed  CAS  Google Scholar 

  57. Johnson JA, Zatorre RJ. Attention to simultaneous unrelated auditory and visual events: Behavioral and neural correlates. Cereb Cortex 2005;15(10):1609–1620.

    Article  PubMed  Google Scholar 

  58. Johnson JA, Zatorre RJ. Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. Neuroimage 2006;31(4):1673–1681.

    Article  PubMed  Google Scholar 

  59. Lavie N. Distracted and confused? Selective attention under load. Trends Cogn Sci 2005;9(2):75–82.

    Article  PubMed  Google Scholar 

  60. Degerman A, Rinne T, Salmi J, Salonen O, Alho K. Selective attention to sound location or pitch studied with fMRI. Brain Res 2006;1077(1):123–134.

    Article  PubMed  CAS  Google Scholar 

  61. Petkov CI, Kang X, Alho K, Bertrand O, Yund EW, Woods DL. Attentional modulation of human auditory cortex. Nat Neurosci 2004;7(6):658–663.

    Article  PubMed  CAS  Google Scholar 

  62. Kayser C, Petkov CI, Augath M, Logothetis NK. Functional imaging reveals visual modulation of specific fields in auditory cortex. J Neurosci 2007;27(8):1824–1835.

    Article  PubMed  CAS  Google Scholar 

  63. Lehmann C, Herdener M, Esposito F, Hubl D, di Salle F, Scheffler K, Bach DR, Federspiel A, Kretz R, Dierks T, Seifritz E. Differential patterns of multisensory interactions in core and belt areas of human auditory cortex. Neuroimage 2006;31(1):294–300.

    Article  PubMed  Google Scholar 

  64. Ahveninen J, Jaaskelainen IP, Raij T, Bonmassar G, Devore S, Hamalainen M, Levanen S, Lin F-H, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW. Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci USA 2006;103(39):14608–14613.

    Article  PubMed  CAS  Google Scholar 

  65. Lewald J, Meister IG, Weidemann J, Topper R. Involvement of the superior temporal cortex and the occipital cortex in spatial hearing: Evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci 2004;16(5):828–838.

    Article  PubMed  Google Scholar 

  66. Degerman A, Rinne T, Pekkola J, Autti T, Jaaskelainen IP, Sams M, Alho K. Human brain activity associated with audiovisual perception and attention. Neuroimage 2007;34(4): 1683–1691.

    Article  PubMed  Google Scholar 

  67. Greenberg GZ, Larkin WD. Frequency-response characteristic of auditory observers detecting signals of a single frequency in noise: The probe-signal method. J Acoust Soc Am 1968;44(6):1513–1523.

    Article  PubMed  CAS  Google Scholar 

  68. Schlauch RS, Hafter ER. Listening bandwidths and frequency uncertainty in pure-tone signal detection. J Acoust Soc Am 1991;90(3):1332–1339.

    Article  PubMed  CAS  Google Scholar 

  69. Fritz JB, Elhilali M, David SV, Shamma SA,. Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1?Hear Res 2007;229:186–203.

    Article  PubMed  Google Scholar 

  70. Shackleton TM, Carlyon RP. The role of resolved and unresolved harmonics in pitch perception and frequency modulation ­discrimination. J Acoust Soc Am 1994;95:3529–3540.

    Article  PubMed  CAS  Google Scholar 

  71. Penagos H, Melcher JR, Oxenham AJ. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 2004;24(30):6810–6815.

    Article  PubMed  CAS  Google Scholar 

  72. Griffiths TD, Büchel C, Frackowiak RSJ, Patterson RD. Analysis of temporal structure in sound by the human brain. Nat Neurosci 1998;1:422–427.

    Article  PubMed  CAS  Google Scholar 

  73. Blauert J, Lindemann W. Spatial mapping of intracranial auditory events for various degrees of interaural coherence. J Acoust Soc Am 1986;79(3):806–813.

    Article  PubMed  CAS  Google Scholar 

  74. Budd TW, Hall DA, Goncalves MS, Akeroyd MA, Foster JR, Palmer AR, Head K, Summerfield AQ. Binaural specialisation in human auditory cortex: An fMRI investigation of interaural correlation sensitivity. Neuroimage 2003;20(3):1783–1794.

    Article  PubMed  CAS  Google Scholar 

  75. Culling JF, Colburn HS, Spurchise M. Interaural correlation sensitivity. J Acoust Soc Am 2001;110(2):1020–1029.

    Article  PubMed  CAS  Google Scholar 

  76. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 2001;4:633–637.

    Article  PubMed  CAS  Google Scholar 

  77. Scheich H, Brechmann A, Brosch M, Budinger E, Ohl FW. The cognitive auditory cortex: Task-specificity of stimulus representations. Hear Res 2007;229:213–224.

    Article  PubMed  Google Scholar 

  78. Brechmann A, Scheich H. Hemispheric shifts of sound representation in auditory cortex with conceptual listening. Cereb Cortex 2005;15(5):578–587.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Ann Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hall, D.A., Paltoglou, A. . (2009). fMRI of the Central Auditory System. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics