Skip to main content

Horizontal Gene Transfer and the Evolution of Methanogenic Pathways

  • Protocol
Book cover Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

Horizontal gene transfer (HGT) is a driving force in the evolution of metabolic pathways, allowing novel enzymatic functions that provide a selective advantage to be rapidly incorporated into an organism’s physiology. Here, the role of two HGT events in the evolution of methanogenesis is described. First, the acetoclastic sub-pathway of methanogenesis is shown to have evolved via a transfer of the ackA and pta genes from a cellulolytic clostridia to a family of methanogenic archaea. Second, the system for encoding the amino acid pyrrolysine, used for the synthesis of enzymes for methanogenesis from methylamines, is shown to likely have evolved via transfer from an ancient, unknown, deeply branching organismal lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horowitz, N. H. (1945) On the evolution of biochemical syntheses. Proc Natl Acad Sci U S A 31, 153–7.

    Article  CAS  PubMed  Google Scholar 

  2. Jensen, R. A. (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30, 409–25.

    Article  CAS  PubMed  Google Scholar 

  3. Fondi, M., Brilli, M., Emiliani, G., Paffetti, D., Fani, R. (2007) The primordial metabolism: an ancestral interconnection between leucine, arginine, and lysine biosynthesis. BMC Evol Biol 7 Suppl 2, S3.

    Article  PubMed  Google Scholar 

  4. Fani, R., Brilli, M., Fondi, M., Lio, P. (2007) The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case. BMC Evol Biol 7 Suppl 2, S4.

    Article  PubMed  Google Scholar 

  5. Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S. Y., Shearer, A. G., Tissier, C., Walk, T. C., Zhang, P., Karp, P. D. (2007) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 36, D623–31.

    Article  PubMed  Google Scholar 

  6. Dejongh, M., Formsma, K., Boillot, P., Gould, J., Rycenga, M., Best, A. (2007) Toward the automated generation of genome-scale metabolic networks in the SEED. BMC Bioinformatics 8, 139.

    Article  PubMed  Google Scholar 

  7. Pal, C., Papp, B., Lercher, M. J. (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37, 1372–5.

    Article  CAS  PubMed  Google Scholar 

  8. Chistoserdova, L., Jenkins, C., Kalyuzhnaya, M. G., Marx, C. J., Lapidus, A., Vorholt, J. A., Staley, J. T., Lidstrom, M. E. (2004) The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol Biol Evol 21, 1234–41.

    Article  CAS  PubMed  Google Scholar 

  9. Chistoserdova, L., Laukel, M., Portais, J. C., Vorholt, J. A., Lidstrom, M. E. (2004) Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186, 22–8.

    Article  CAS  PubMed  Google Scholar 

  10. Gribaldo, S., Brochier-Armanet, C. (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361, 1007–22.

    Article  CAS  PubMed  Google Scholar 

  11. Bapteste, E., Brochier, C., Boucher, Y. (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1, 353–63.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Q., Li, L., Rejtar, T., Lessner, D. J., Karger, B. L., Ferry, J. G. (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188, 702–10.

    Article  CAS  PubMed  Google Scholar 

  13. Smith, K. S., Ingram-Smith, C. (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15, 150–5.

    Article  CAS  PubMed  Google Scholar 

  14. Ferry, J. G. (1992) Methane from acetate. J Bacteriol 174, 5489–95.

    CAS  PubMed  Google Scholar 

  15. Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., Fitzhugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., Dearellano, K., Johnson, R., Linton, L., Mcewan, P., Mckernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A. M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White, O., White, R. H., Conway De Macario, E., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E., Metcalf, W. W., Birren, B. (2002) The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12, 532–42.

    Article  CAS  PubMed  Google Scholar 

  16. Boone, D., Whitman, W., Koga, Y. (2001) Order III. Methanosarcinales, in Bergey’s Manual of Systematic Bacteriology (Boone, D., Castenholz G., Garrity G., ed.) Springer-Verlag, New York, 268–94.

    Google Scholar 

  17. Thauer, R. K. (1998) Biochemistry of metha- nogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144 (Pt 9), 2377–406.

    Article  CAS  PubMed  Google Scholar 

  18. Ingram-Smith, C., Martin, S. R., Smith, K. S. (2006) Acetate kinase: not just a bacterial enzyme. Trends Microbiol 14, 249–53.

    Article  CAS  PubMed  Google Scholar 

  19. White, D. (2000) The Physiology and Biochemistry of Prokaryotes, Oxford University Press, New York.

    Google Scholar 

  20. Meile, L., Rohr, L. M., Geissmann, T. A., Herensperger, M., Teuber, M. (2001) Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol 183, 2929–36.

    Article  CAS  PubMed  Google Scholar 

  21. Wolfe, A. J. (2005) The acetate switch. Microbiol Mol Biol Rev 69, 12–50.

    Article  CAS  PubMed  Google Scholar 

  22. Fournier, G. P., Gogarten, J. P. (2008) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190, 1124–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ronquist, F., Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–4.

    Article  CAS  PubMed  Google Scholar 

  24. Felsenstein, J. (2005) PHYLIP (Phylogeny Inference Package). In Distributed by the Author. Department of Genome Sciences, University of Washington, Seattle Place.

    Google Scholar 

  25. Guindon, S., Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.

    Article  PubMed  Google Scholar 

  26. Stams, A. (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66, 271–94.

    Article  CAS  PubMed  Google Scholar 

  27. Beiko, R. G., Harlow, T. J., Ragan, M. A. (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102, 14332–7.

    Article  CAS  PubMed  Google Scholar 

  28. Lawson, P. A., Llop-Perez, P., Hutson, R. A., Hippe, H., Collins, M. D. (1993) Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol Lett 113, 87–92.

    Article  CAS  PubMed  Google Scholar 

  29. Desvaux, M. (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev 29, 741–64.

    Article  CAS  PubMed  Google Scholar 

  30. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H., Farrow, J. A. (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–26.

    Article  CAS  PubMed  Google Scholar 

  31. Wellman, C. H., Osterloff, P. L., Mohiuddin, U. (2003) Fragments of the earliest land plants. Nature 425, 282–5.

    Article  CAS  PubMed  Google Scholar 

  32. Min, H., Zinder, S. H. (1989) Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. Strain CALS-1 and Methanothrix sp. Strain CALS-1. Appl Environ Microbiol 55, 488–91.

    CAS  PubMed  Google Scholar 

  33. Zhang, Y., Gladyshev, V. N. (2007) High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis. Nucleic Acids Res 35, 4952–63.

    Article  CAS  PubMed  Google Scholar 

  34. Herring, S., Ambrogelly, A., Polycarpo, C. R., Soll, D. (2007) Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase. Nucleic Acids Res 35, 1270–8.

    Article  CAS  PubMed  Google Scholar 

  35. Krzycki, J. A. (2004) Function of genetically encoded pyrrolysine in corrinoid-dependent methylamine methyltransferases. Curr Opin Chem Biol 8, 484–91.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Baranov, P. V., Atkins, J. F., Gladyshev, V. N. (2005) Pyrrolysine and selenocysteine use dissimilar decoding strategies. J Biol Chem 280, 20740–51.

    Article  CAS  PubMed  Google Scholar 

  37. Polycarpo, C., Ambrogelly, A., Berube, A., Winbush, S. M., Mccloskey, J. A., Crain, P. F., Wood, J. L., Soll, D. (2004) An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc Natl Acad Sci U S A 101, 12450–4.

    Article  CAS  PubMed  Google Scholar 

  38. Longstaff, D. G., Blight, S. K., Zhang, L., Green-Church, K. B., Krzycki, J. A. (2007) In vivo contextual requirements for UAG translation as pyrrolysine. Mol Microbiol 63, 229–41.

    Article  CAS  PubMed  Google Scholar 

  39. Longstaff, D. G., Larue, R. C., Faust, J. E., Mahapatra, A., Zhang, L., Green-Church, K. B., Krzycki, J. A. (2007) A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc Natl Acad Sci U S A 104, 1021–6.

    Article  CAS  PubMed  Google Scholar 

  40. Zhaxybayeva, O., Gogarten, J. P. (2004) Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 20, 182–7.

    Article  CAS  PubMed  Google Scholar 

  41. Novichkov, P. S., Omelchenko, M. V., Gelfand, M. S., Mironov, A. A., Wolf, Y. I., Koonin, E. V. (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 186, 6575–85.

    Article  CAS  PubMed  Google Scholar 

  42. Huang, J., Xu, Y., Gogarten, J. P. (2005) The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol Biol Evol 22, 2142–6.

    Article  CAS  PubMed  Google Scholar 

  43. Gogarten-Boekels, M., Hilario, E., Gogarten, J. P. (1995) The effects of heavy meteorite bombardment on the early evolution – the emergence of the three domains of life. Orig Life Evol Biosph 25, 251–64.

    Article  CAS  PubMed  Google Scholar 

  44. Gogarten, J. P., Fournier, G., Zhaxybayeva, O. (2007) Gene transfer and the reconstruction of life’s early history from genomic data. Space Sci Rev 135, 115–31.

    Article  Google Scholar 

  45. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fournier, G. (2009). Horizontal Gene Transfer and the Evolution of Methanogenic Pathways. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics