Skip to main content

Role of Horizontal Gene Transfer in the Evolution of Photosynthetic Eukaryotes and Their Plastids

  • Protocol
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

Plastids are the organelles derived from a cyanobacterium through endosymbiosis. Unlike mitochondria, plastids are not found in all eukaryotes, but their evolution has an added layer of complexity since plastids have moved between eukaryotic lineages by secondary and tertiary endosymbiotic events. This complex history, together with the genetic integration between plastids and their host, has led to many opportunities for gene flow between phylogenetically distinct lineages. Some intracellular transfers do not lead to a protein functioning in a new environment, but many others do and the protein makeup of many plastids appears to have been influenced by exogenous sources as well. Here, different evolutionary sources and cellular destinations of gene flow that has affected the plastid lineage are reviewed. Most horizontal gene transfer (HGT) affecting the modern plastid has taken place via the host nucleus, in the form of genes for plastid-targeted proteins. The impact of this varies greatly from lineage to lineage, but in some cases such transfers can be as high as one fifth of analyzed genes. More rarely, genes have also been transferred to the plastid genome itself, and plastid genes have also been transferred to other non-plant, non-algal lineages. Overall, the proteome of many plastids has emerged as a mosaic of proteins from many sources, some from within the same cell (e.g., cytosolic genes or genes left over from the replacement of an earlier plastid), some from the plastid of other algal lineages, and some from completely unrelated sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray, M. W., Burger, G., Lang, B. F. (1999) Mitochondrial evolution. Science 283, 1476–81.

    Article  CAS  PubMed  Google Scholar 

  2. Gray, M. W. (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9, 678–87.

    Article  CAS  PubMed  Google Scholar 

  3. Williams, B. A. P., Keeling, P. J. (2003) Cryptic organelles in parasitic protists and fungi. Adv Parasitol 54, 9–67.

    Article  PubMed  Google Scholar 

  4. Nowack, E. C., Melkonian, M., Glockner, G. (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18, 410–8.

    Article  CAS  PubMed  Google Scholar 

  5. Keeling, P. J., Archibald, J. M. (2008) Organelle evolution: What’s in a name? Curr Biol 18, R345–7.

    Article  CAS  PubMed  Google Scholar 

  6. Palmer, J. D. (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39, 1–9.

    Article  Google Scholar 

  7. Larkum, A. W., Lockhart, P. J., Howe, C. J. (2007) Shopping for plastids. Trends Plant Sci 12, 189–95.

    Article  CAS  PubMed  Google Scholar 

  8. Keeling, P. J. (2004) The diversity and evolutionary history of plastids and their hosts. Am J Bot 91, 1481–93.

    Article  Google Scholar 

  9. Rodriguez-Ezpeleta, N., Brinkmann, H., Burey, S. C., Roure, B., Burger, G., Loffelhardt, W., Bohnert, H. J., Philippe, H., Lang, B. F. (2005) Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Curr Biol 15, 1325–30.

    Article  CAS  PubMed  Google Scholar 

  10. Archibald, J. M., Keeling, P. J. (2002) Recycled plastids: A green movement in eukaryotic evolution. Trends Genet 18, 577–84.

    Article  CAS  PubMed  Google Scholar 

  11. Rogers, M. B., Gilson, P. R., Su, V., Mcfadden, G. I., Keeling, P. J. (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24, 54–62.

    Article  CAS  PubMed  Google Scholar 

  12. Burki, F., Shalchian-Tabrizi, K., Minge, M., Skjaeveland, A., Nikolaev, S. I., Jakobsen, K. S., Pawlowski, J. (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2, e790.

    Article  PubMed  Google Scholar 

  13. Hackett, J. D., Yoon, H. S., Li, S., Reyes-Prieto, A., Rummele, S. E., Bhattacharya, D. (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol 24, 1702–13.

    Article  CAS  PubMed  Google Scholar 

  14. Patron, N. J., Inagaki, Y., Keeling, P. J. (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17, 887–91.

    Article  CAS  PubMed  Google Scholar 

  15. Leigh, J. W., Susko, E., Baumgartner, M., Roger, A. J. (2008) Testing congruence in phylogenomic analysis. Syst Biol 57, 104–15.

    Article  PubMed  Google Scholar 

  16. Cavalier-Smith, T. (2004) Chromalveolate diversity and cell megaevolution: Interplay of membranes, genomes and cytoskeleton, in Organelles, genomes and eukaryotic evolution (Hirt, R. P., Horner D., ed.) Taylor and Francis, London 71–103.

    Google Scholar 

  17. Delwiche, C. F. (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154, Supplement, S164–77.

    Article  PubMed  Google Scholar 

  18. Watanabe, M. M., Suda, S., Inouye, I., Sawaguchi, I., Chihara, M. (1990) Lepidodinium viride gen. et sp. nov. Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. J Phycol 26, 741–51.

    Article  Google Scholar 

  19. Chesnick, J. M., Hooistra, W. H., Wellbrock, U., Medlin, L. K. (1997) Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol 44, 314–20.

    Article  CAS  PubMed  Google Scholar 

  20. Inagaki, Y., Dacks, J. B., Doolittle, W. F., Watanabe, K. I., Ohama, T. (2000) Evolutionary relationship between dinoflagellates bearing obligate diatom endosymbionts: Insight into tertiary endosymbiosis. Int J Syst Evol Microbiol 50 Pt 6, 2075–81.

    PubMed  Google Scholar 

  21. Imanian, B., Keeling, P. J. (2007) The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages. BMC Evol Biol 7, 172.

    Article  PubMed  Google Scholar 

  22. Archibald, J. M., Rogers, M. B., Toop, M., Ishida, K., Keeling, P. J. (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100, 7678–83.

    Article  CAS  PubMed  Google Scholar 

  23. Bachvaroff, T. R., Concepcion, G. T., Rogers, C. R., Herman, E. M., Delwiche, C. F. (2004) Dinoflagellate expressed sequence tags data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155, 65–78.

    Article  CAS  PubMed  Google Scholar 

  24. Hackett, J. D., Yoon, H. S., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., Nosenko, T., Bhattacharya, D. (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Curr Biol 14, 213–8.

    CAS  PubMed  Google Scholar 

  25. Patron, N. J., Waller, R. F., Keeling, P. J. (2006) A tertiary plastid uses genes from two endosymbionts. J Mol Biol 357, 1373–82.

    Article  CAS  PubMed  Google Scholar 

  26. Patron, N. J., Waller, R. F., Archibald, J. M., Keeling, P. J. (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348, 1015–24.

    Article  CAS  PubMed  Google Scholar 

  27. Ralph, S. A., Van Dooren, G. G., Waller, R. F., Crawford, M. J., Fraunholz, M. J., Foth, B. J., Tonkin, C. J., Roos, D. S., Mcfadden, G. I. (2004) Tropical infectious diseases: Metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2, 203–16.

    Article  CAS  PubMed  Google Scholar 

  28. Mcfadden, G. I. (1999) Plastids and protein targeting. J Eukaryot Microbiol 46, 339–46.

    Article  CAS  PubMed  Google Scholar 

  29. Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M., Kowallik, K. V. (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162–5.

    Article  CAS  PubMed  Google Scholar 

  30. Duchene, A. M., Giritch, A., Hoffmann, B., Cognat, V., Lancelin, D., Peeters, N. M., Zaepfel, M., Marechal-Drouard, L., Small, I. D. (2005) Dual targeting is the rule for organellar aminoacyl-trna synthetases in Arabidopsis thaliana. Proc Natl Acad Sci USA 102, 16484–9.

    Article  CAS  PubMed  Google Scholar 

  31. Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M., Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99, 12246–51.

    Article  CAS  PubMed  Google Scholar 

  32. Li, S., Nosenko, T., Hackett, J. D., Bhattacharya, D. (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol Biol Evol 23, 663–74.

    Article  PubMed  Google Scholar 

  33. Reyes-Prieto, A., Hackett, J. D., Soares, M. B., Bonaldo, M. F., Bhattacharya, D. (2006) Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol 16, 2320–5.

    Article  CAS  PubMed  Google Scholar 

  34. Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R. L., Zhao, Q., Koonin, E. V., Davis, R. W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–9.

    Article  CAS  PubMed  Google Scholar 

  35. Tyra, H. M., Linka, M., Weber, A. P., Bhattacharya, D. (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8, R212.

    Article  PubMed  Google Scholar 

  36. Royo, J., Gimez, E., Hueros, G. (2000) CMP-KDO synthetase: A plant gene borrowed from gram-negative eubacteria. Trends Genet 16, 432–3.

    Article  CAS  PubMed  Google Scholar 

  37. Brinkman, F. S., Blanchard, J. L., Cherkasov, A., Av-Gay, Y., Brunham, R. C., Fernandez, R. C., Finlay, B. B., Otto, S. P., Ouellette, B. F., Keeling, P. J., Rose, A. M., Hancock, R. E., Jones, S. J., Greberg, H. (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res 12, 1159–67.

    Article  CAS  PubMed  Google Scholar 

  38. Ryall, K., Harper, J. T., Keeling, P. J. (2003) Plastid-derived type II fatty acid biosynthetic enzymes in chromists. Gene 313, 139–48.

    Article  CAS  PubMed  Google Scholar 

  39. Huang, J., Gogarten, J. P. (2007) Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol 8, R99.

    Article  PubMed  Google Scholar 

  40. Rogers, M. B., Watkins, R. F., Harper, J. T., Durnford, D. G., Gray, M. W., Keeling, P. J. (2007) A complex and punctate distribution of three eukaryotic genes derived by lateral gene transfer. BMC Evol Biol 7, 89.

    Article  PubMed  Google Scholar 

  41. Waller, R. F., Patron, N. J., Keeling, P. J. (2006) Phylogenetic history of plastid-targeted proteins in the peridinin-containing dinoflagellate Heterocapsa triquetra. Int J Syst Evol Microbiol 56, 1439–47.

    Article  CAS  PubMed  Google Scholar 

  42. Obornik, M., Green, B. R. (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22, 2343–53.

    Article  CAS  PubMed  Google Scholar 

  43. Sato, S., Clough, B., Coates, L., Wilson, R. J. (2004) Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155, 117–25.

    Article  CAS  PubMed  Google Scholar 

  44. Richards, T. A., Dacks, J. B., Campbell, S. A., Blanchard, J. L., Foster, P. G., Mcleod, R., Roberts, C. W. (2006) Evolutionary origins of the eukaryotic shikimate pathway: Gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell 5, 1517–31.

    Article  CAS  PubMed  Google Scholar 

  45. Waller, R. F., Slamovits, C. H., Keeling, P. J. (2006) Lateral gene transfer of a multigene region from cyanobacteria to dinoflagellates resulting in a novel plastid-targeted fusion protein. Mol Biol Evol 23, 1437–43.

    Article  CAS  PubMed  Google Scholar 

  46. Fagan, T., Woodland Hastings, J., Morse, D. (1998) The phylogeny of glyceraldehyde-3-phosphate dehydrogenase indicates lateral gene transfer from cryptomonads to dinoflagellates. J Mol Evol 47, 633–9.

    Article  CAS  PubMed  Google Scholar 

  47. Fast, N. M., Kissinger, J. C., Roos, D. S., Keeling, P. J. (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18, 418–26.

    CAS  PubMed  Google Scholar 

  48. Takishita, K., Ishida, K., Maruyama, T. (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): Possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. Protist 154, 443–54.

    Article  CAS  PubMed  Google Scholar 

  49. Fagan, T. M., Hastings, J. W. (2002) Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 19, 1203–7.

    CAS  PubMed  Google Scholar 

  50. Patron, N. J., Rogers, M. B., Keeling, P. J. (2004) Gene replacement of fructose-1,6-bisphosphate aldolase (FBA) supports a single photosynthetic ancestor of chromalveolates. Eukaryot Cell 3, 1169–75.

    Article  CAS  PubMed  Google Scholar 

  51. Harper, J. T., Keeling, P. J. (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20, 1730–5.

    Article  CAS  PubMed  Google Scholar 

  52. Grauvogel, C., Brinkmann, H., Petersen, J. (2007) Evolution of the glucose-6-phosphate isomerase: The plasticity of primary metabolism in photosynthetic eukaryotes. Mol Biol Evol 24, 1611–21.

    Article  CAS  PubMed  Google Scholar 

  53. Nosenko, T., Bhattacharya, D. (2007) Horizontal gene transfer in chromalveolates. BMC Evol Biol 7, 173.

    Article  PubMed  Google Scholar 

  54. Park, J. M., Manen, J. F., Schneeweiss, G. M. (2007) Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phylogenet Evol 43, 974–85.

    Article  CAS  PubMed  Google Scholar 

  55. De Vries, J., Herzfeld, T., Wackernagel, W. (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol Microbiol 53, 323–34.

    Article  PubMed  Google Scholar 

  56. Rogers, M. B., Patron, N. J., Keeling, P. J. (2007) Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria. BMC Biol 5, 26.

    Article  PubMed  Google Scholar 

  57. Gross, W., Lenze, D., Nowitzki, U., Weiske, J., Schnarrenberger, C. (1999) Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria. Gene 230, 7–14.

    Article  CAS  PubMed  Google Scholar 

  58. Bergthorsson, U., Adams, K. L., Thomason, B., Palmer, J. D. (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201.

    Article  CAS  PubMed  Google Scholar 

  59. Sheveleva, E. V., Hallick, R. B. (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32, 803–10.

    Article  CAS  PubMed  Google Scholar 

  60. Odom, O. W., Shenkenberg, D. L., Garcia, J. A., Herrin, D. L. (2004) A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: In vitro self-splicing and genetic evidence for maturase activity. RNA 10, 1097–107.

    Article  CAS  PubMed  Google Scholar 

  61. Rice, D. W., Palmer, J. D. (2006) An exceptional horizontal gene transfer in plastids: Gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4, 31.

    Article  PubMed  Google Scholar 

  62. Khan, H., Parks, N., Kozera, C., Curtis, B. A., Parsons, B. J., Bowman, S., Archibald, J. M. (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: Lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24, 1832–42.

    Article  CAS  PubMed  Google Scholar 

  63. Van Wijk, K. J. (2004) Plastid proteomics. Plant Physiol Biochem 42, 963–77.

    Article  PubMed  Google Scholar 

  64. Keeling, P. J., Palmer, J. D. (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet, 9, 605–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Keeling, P.J. (2009). Role of Horizontal Gene Transfer in the Evolution of Photosynthetic Eukaryotes and Their Plastids. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics