Skip to main content

Population Genomics and the Bacterial Species Concept

  • Protocol
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

In recent years, the importance of horizontal gene transfer (HGT) in bacterial evolution has been elevated to such a degree that many bacteriologists now question the very existence of bacterial species. If gene transfer is as rampant as comparative genomic studies have suggested, how could bacterial species survive such genomic fluidity? And yet, most bacteriologists recognize, and name, as species, clusters of bacterial isolates that share complex phenotypic properties. The Core Genome Hypothesis (CGH) has been proposed to explain this apparent paradox of fluid bacterial genomes associated with stable phenotypic clusters. It posits that there is a core of genes responsible for maintaining the species-specific phenotypic clusters observed throughout bacterial diversity and argues that, even in the face of substantial genomic fluidity, bacterial species can be rationally identified and named.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., Woese, C. R. (1980) The phylogeny of prokaryotes. Science 209, 457–63.

    Article  CAS  PubMed  Google Scholar 

  2. Olsen, G. J., Woese, C. J. (1993) Ribosomal RNA: a key to phylogeny. FASEB J 7, 113–23.

    CAS  PubMed  Google Scholar 

  3. Pace, N. R., Stahl, D. A., Lane, D. J., Olsen, G. J. (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51, 4–12.

    Google Scholar 

  4. Woese, C. R. (1987) Bacterial evolution. Microbiological Reviews 51, 221–71.

    CAS  PubMed  Google Scholar 

  5. Woese, C., Kandler, O., Wheelis, M. (1990) Towards a natural system of organisms – proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ludwig, W., Neumaier, J., Klugbauer, N., Brockmann, E., Roller, C., Jilg, S., Reetz, K., Schachtner, I., Ludvigsen, A., Bachleitner, M., Fischer, U., Schleifer, K., H. (1993) Phylogenetic relationships of Bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes. Antonie Van Leeuwenhoek 64, 285–305.

    Article  CAS  PubMed  Google Scholar 

  7. Brown, J., Douady, C., Italia, M., Marshall, W., Stanhope, M. (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–5.

    Article  CAS  PubMed  Google Scholar 

  8. Kidwell, M. (1993) Lateral transfer in natural populations of eukaryotes. Ann Rev Genetics 27, 235–56.

    Article  CAS  Google Scholar 

  9. Nelson, K., Selander, R. K. (1994) Intergeneric transfer and recombination of the 6-phosphogluconate dehydrogenase gene (gnd) in enteric bacteria. Proc Natl Acad Sci U S A 91, 10227–31.

    Article  CAS  PubMed  Google Scholar 

  10. Brown, J. R., Doolittle, W. F. (1997) Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61, 456–502.

    CAS  PubMed  Google Scholar 

  11. Nesbo, C. L., L’Haridon, S., Stetter, K. O., Doolittle, W. F. (2001) Phylogenetic analyses of two “Archaeal” genes in thermotoga maritima reveal multiple transfers between Archaea and Bacteria. Mol Biol Evol 18, 362–75.

    CAS  PubMed  Google Scholar 

  12. Doolittle, W. F. (1999) Lateral genomics. Trends Cell Biol 9, M5–8.

    Article  CAS  PubMed  Google Scholar 

  13. Doolittle, W. F., Papke, R. T. (2006) Genomics and the bacterial species problem. Genome Biology 7, 116.

    Article  PubMed  Google Scholar 

  14. Cohan, F. (2002) What are bacterial species? Annu Rev Microbiol 56, 457–87.

    Article  CAS  PubMed  Google Scholar 

  15. Sapp, J. (2005) Microbial phylogeny and evolution: Concepts and controversies. The Bacteriums Place in Nature. Oxford University Press, New York.

    Google Scholar 

  16. Rossello-Mora, R., Amann, R. (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.

    Article  CAS  PubMed  Google Scholar 

  17. Shute, L.A., Gutteridge, C.S., Norris, J.R., Berkeley, R.C. (1984) Curie-point pyrolysis mass spectrometry applied to characterization and identification of selected Bacillus species. J Gen Microbiol 130, 343–55.

    CAS  PubMed  Google Scholar 

  18. Sneath, P., Stevens, M. (1985) A numerical taxonomic study of Actinobacillus, Pasteurella, and Yersinia. J Gen Microbiol 131, 2711–38.

    CAS  PubMed  Google Scholar 

  19. Barrett, S., Sneath, P. (1994) A numerical phenotypic taxonomic study of the genus Neisseria. Microbiology 140, 2867–91.

    Article  CAS  PubMed  Google Scholar 

  20. Mauchline, W., Keevil, C. (1991) Development of the BIOLOG substrate utilization system for identification of Legionella spp. Appl Environ Microbiol 57, 3345–9.

    CAS  PubMed  Google Scholar 

  21. Kirschner, C., Maquelin, K., Pina, P., Thi, N. N., Choo-Smith, L., Sockalingum, G., Sandt, C., Ami, D., Orsini, F., Doglia, S., Allouch, P., Mainfait, M., Puppels, G., Naumann, D. (2001) Classification and identification of enterococci: A comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39, 1763–70.

    Article  CAS  PubMed  Google Scholar 

  22. Cohan, F. (2002) Sexual isolation and speciation in bacteria. Genetica 116, 359–70.

    Article  CAS  PubMed  Google Scholar 

  23. Godoy, A. P., Ribeiro, M. L., Benvengo, Y. H., Vitiello, L., Miranda M. de C., Mendonca, S., Pedrazzoli, J., Jr (2003) Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. BMC Gastroenterol 3, 20–26.

    Article  PubMed  Google Scholar 

  24. Hanage, W. P., Fraser, C., Spratt, B. G. (2005) Fuzzy species among recombinogenic bacteria. BMC Biol 3, 6.

    Article  PubMed  Google Scholar 

  25. Priest, F., Barker, M., Baillie, L., Holmes, E., Maiden, M. (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186, 7959–70.

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, J., Pacocha, S., Pharino, C., Klepac-Ceraj, V., Hunt, D., Benoit, J., Sarma-Rupavtarm, R., Distel, D., Polz, M. (2005) Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–3.

    Article  CAS  PubMed  Google Scholar 

  27. Baldwin, A., Mahenthiralingam, E., Thickett, K., Honeybourne, D., Maiden, M., Govan, J., Speert, D., Lipuma, J., Vandamme, P., Dowson, C. (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43, 4665–73.

    Article  CAS  PubMed  Google Scholar 

  28. Hanage, W., Kaijalainen, T., Syrjanen, R., Auranen, K., Leinonen, M., Makela, P., Spratt, B. (2005) Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect Immun 73, 431–5.

    Article  CAS  PubMed  Google Scholar 

  29. Stackebrandt, E., Frederiksen. W., Garrity G. M., Grimont P. A., Kô mpfer P., Maiden M. C., Nesme X., Rossellö -Mora R., Swings J., Trü per H.G., Vauterin L., Ward A. C., Whitman W. B. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–7.

    Article  CAS  PubMed  Google Scholar 

  30. Lindh, J., Terenius, O., Faye, I. (2005) 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71, 7217–23.

    Article  CAS  PubMed  Google Scholar 

  31. Drancourt, M., Berger, P., Raoult, D. (2004) Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 42, 2197–202.

    Article  CAS  PubMed  Google Scholar 

  32. Clarridge, J. R. (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17, 840–62.

    Article  CAS  PubMed  Google Scholar 

  33. Clayton, R., Sutton, G., Hinkle, P. J., Bult, C., Fields, C. (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45, 595–9.

    Article  CAS  PubMed  Google Scholar 

  34. Wertz, J. E., Valletta-Goldstone, C. M., Gordon, D. M., Riley, M. A. (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 16, 1236–48.

    Article  CAS  PubMed  Google Scholar 

  35. Gordon, D. M., Fitzgibbon, F. (1999) The distribution of enteric bacteria from Australian mammals: Host and geographical effects. Microbiology 145, 2663–71.

    CAS  PubMed  Google Scholar 

  36. Holt, J. G. (1994) Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  37. Maiden, M. (1998) Horizontal genetic exchange, evolution and spread of antibiotic resistance in bacteria. Clin Infect Dis 27, S12–20.

    Article  CAS  PubMed  Google Scholar 

  38. Feil, E. J., Cooper. J. E, Grundmann, H., Robinson, D. A., Enright, M. C., Berendt, T., Peacock, S. J., Smith, J. M., Murphy, M., Spratt, B. G., Moore, C. E., Day, N. P. (2003) How clonal is Staphylococcus aureus? J Bacteriol 185, 3307–16.

    Article  CAS  PubMed  Google Scholar 

  39. Whitaker, R., Grogan, D., Taylor, J. (2005) Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Mol Biol Evol 22, 2354–61.

    Article  CAS  PubMed  Google Scholar 

  40. Woodward, M., Sojka, M., Sprigings, K., Humphrey, T. (2000) The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol 49, 481–7.

    CAS  PubMed  Google Scholar 

  41. Glasner, J., Perna, N. (2004) Comparative genomics of E. coli. Microbiol Today 31.

    Google Scholar 

  42. Mau, B., Glasner, J., Darling, A., Perna, N. (2006) Genome-wide detection and analysis of homologous recombination among sequenced strains of Escherichia coli. Genome Biology 7, R44.

    Article  PubMed  Google Scholar 

  43. Milkman, R., Raleigh, E., McKanea, M., Crydermanc, D., Bilodeau, P., Mcweeny, K. (1999) Molecular evolution of the Escherichia coli chromosome. V. Recombination patterns among strains of diverse origin. Genetics 153, 539–54.

    CAS  PubMed  Google Scholar 

  44. Milkman, R., Jaeger, E., Mcbride, R. (2003) Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination. Genetics 163, 475–83.

    CAS  PubMed  Google Scholar 

  45. Edwards, S. V., Fertil, B., Giron, A., Deschavanne, P. J. (2002) A genomic schism in birds revealed by phylogenetic analysis of DNA strings. Systematic Biology 51, 599–613.

    Article  PubMed  Google Scholar 

  46. Juhas, M., Power, P. M., Harding, R. M., Ferguson, D. J., Dimopoulou, I. D., Elamin, A. R., Mohd-Zain, Z., Hood, D. W., Adegbola, R., Erwin, A., Smith, A., Munson, R. S., Jr, Harrison, A., Mansfield, L., Bentley, S., Crook, D. W. (2007) Sequence and functional analyses of Haemophilus spp. genomic islands. Genome Biol 8, R237.

    Article  PubMed  Google Scholar 

  47. Coleman, M., Sullivan, M., Martiny, A., Steglich, C., Barry, K., Delong, E., Chisholm, S. (2006) Genomic islands and the ecology and evolution of Prochlorococcus. Science 311, 1768–9.

    Article  CAS  PubMed  Google Scholar 

  48. Waterfield, N., Daborn, P., Dowling, A., Yang, G., Hares, M., Ffrench-Constant, R. (2003) The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol Lett 229, 265–70.

    Article  CAS  PubMed  Google Scholar 

  49. Lan, R., Reeves, P. R. (1996) Gene transfer is a major factor in bacterial evolution. Mol Biol Evol 13, 47–55.

    CAS  PubMed  Google Scholar 

  50. Feil, E. (2004) Small change: Keeping pace with microevolution. Nat Rev Microbiol 2, 483–95.

    Article  CAS  PubMed  Google Scholar 

  51. Dobrindt, U., Reidl, J. (2000) Pathogenicity islands and phage conversion: Evolutionary aspects of bacterial pathogenesis. Int J Med Microbiol 290, 519–27.

    CAS  PubMed  Google Scholar 

  52. Karlin, S. (2001) Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol 9, 335–43.

    Article  CAS  PubMed  Google Scholar 

  53. White, P. A., Mciver, C. J., Rawlinson, W. D. (2001) Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother 45, 2658–61.

    Article  CAS  PubMed  Google Scholar 

  54. Godoy, A., Ribeiro, M., Benvengo, Y., Vitiello, L., Miranda, C. M., Mendonca, S., Pedrazzoli, J. J. (2003) Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. BMC Gastroenterol 3, 20.

    Article  PubMed  Google Scholar 

  55. Medini, D., Donati, C., Tettelin, H., Masignani, V., Rappuoli, R. (2005) The microbial pan-genome. Curr Opin Genet Dev 15, 589–94.

    Article  CAS  PubMed  Google Scholar 

  56. Tettelin, H., Masignani, V., Ciesiewicz, M., Donati, C., Medini, D., Ward, N., Angiuli, S., Crabtree, J., Jones, A., Durkin, A. (2005) Genome analysis of multiple pathogenic isolates of Streptoccocus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102, 13950–5.

    Article  CAS  PubMed  Google Scholar 

  57. Mayr, E. (1942) Systematics and the Origin of Species, Columbia University Press, New York.

    Google Scholar 

  58. Kimura, M. (1968) Genetic variability maintained in a finite population due to mutation production of neutral and nearly neutral isoalleles. Genetic Res Camb 11, 247–69.

    Article  CAS  Google Scholar 

  59. Fay, J., Wyckoff, G., Wu, C. (2002) Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415, 1024–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Riley, M.A., Lizotte-Waniewski, M. (2009). Population Genomics and the Bacterial Species Concept. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics