Skip to main content

The Role of Horizontal Gene Transfer in Photosynthesis, Oxygen Production, and Oxygen Tolerance

  • Protocol
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

One of the pivotal events during the early evolution of life was the advent of oxygenic photosynthesis, responsible for producing essentially all of the free oxygen in Earth’s atmosphere. This molecular innovation required the development of two tandemly linked photosystems that generate a redox potential strong enough to oxidize water and then funnel those electrons ultimately to cellular processes like carbon and nitrogen fixation. The by-product of this reaction, molecular oxygen, spawned an entirely new realm of enzymatic reactions that served to mitigate its potential toxicity, as well as to take advantage of the free energy available from using \({\rm O}_{\rm 2}\) as an electron acceptor. These ensuing events ultimately gave rise to aerobic, multicelled eukaryotes and new levels of biological complexity. Remarkably, instances of horizontal gene transfer have been identified at nearly every step in this transformation of the biosphere, from the evolution and radiation of photosynthesis to the development of biological pathways dependent on oxygen. This chapter discusses the evidence and examples of some of these occurrences that have been elucidated in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, R., Frausto Da Silva, J. (2003) The Natural Selection of the Chemical Elements, Oxford University Press, New York.

    Google Scholar 

  2. Schopf, J. W. (2006) Fossil evidence of Archaean life. Philo Trans R Soc B Biol Sci 361, 869–85.

    Article  CAS  Google Scholar 

  3. Knoll, A. H., Javaux, E. J., Hewitt, D., Cohen, P. (2006) Eukaryotic organisms in Proterozoic oceans. Philo Trans R Soc B Biol Sci 361, 1023–38.

    Article  CAS  Google Scholar 

  4. Summons, R. E., Bradley, A. S., Jahnke, L. L., Waldbauer, J. R. (2006) Steroids, triterpenoids and molecular oxygen. Philo Trans R Soc B Biol Sci 361, 951–68.

    Article  CAS  Google Scholar 

  5. Summons, R. E., Jahnke, L. L., Hope, J. M., Logan, G. A. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–7.

    Article  CAS  PubMed  Google Scholar 

  6. Rashby, S. E., Sessions, A. L., Summons, R. E., Newman, D. K. (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci U S A 104, 15099–104.

    Article  CAS  PubMed  Google Scholar 

  7. Blankenship, R. E. (2002) Molecular Mechanisms of Photosynthesis, Blackwell Science, Oxford.

    Book  Google Scholar 

  8. Douglas, R. H., Mullineaux, C. W., Partridge, J. C. (2000) Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Philo Trans R Soc B Biol Sci 355, 1269–72.

    Article  CAS  Google Scholar 

  9. Holland, H. D. (1962) Model for the evolution of the earth’s atmosphere, in Petrologic Studies: A Volume to Honor AF Buddington. Geological Society of America, Washington, DC, 447–77.

    Google Scholar 

  10. Fischer, A. G. (1965) Fossils early life and atmospheric history. Proc Natl Acad Sci U S A 53, 1205–15.

    Article  Google Scholar 

  11. Berkner, L. V., Marshall, L. C. (1965) On origin and rise of oxygen concentration in Earth’s Atmosphere. J Atmos Sci 22, 225–61.

    Article  CAS  Google Scholar 

  12. Catling, D. C., Claire, M. W. (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 237, 1–20.

    Article  CAS  Google Scholar 

  13. Catling, D. C., Glein, C. R., Zahnle, K. J., Mckay, C. P. (2005) Why \({\sf O}_{\sf 2}\) is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5, 415–38.

    Article  CAS  PubMed  Google Scholar 

  14. Buick, R. (1992) The antiquity of oxygenic photosynthesis–-evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74–7.

    Article  CAS  PubMed  Google Scholar 

  15. Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., Beukes, N. J., Gutzmer, J., Maepa, L. N., Steinberger, R. E. (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 97, 1400–5.

    Article  CAS  PubMed  Google Scholar 

  16. Knoll, A. H. (2003) The geological consequences of evolution. Geobiology 1, 3–14.

    Article  CAS  Google Scholar 

  17. Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., Nash, C. Z. (2005) The paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A 102, 11131–6.

    Article  CAS  PubMed  Google Scholar 

  18. Des Marais, D. J. (2000) Evolution. When did photosynthesis emerge on Earth? Science 289, 1703–5.

    Google Scholar 

  19. Woese, C. R. (1987) Bacterial evolution. Microbiol Rev 51, 221–71.

    CAS  PubMed  Google Scholar 

  20. Woese, C. R., Kandler, O., Wheelis, M. L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576–9.

    Article  CAS  PubMed  Google Scholar 

  21. Mojzsis, S. J., Arrhenius, G., Mckeegan, K. D., Harrison, T. M., Nutman, A. P., Friend, C. R. (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–9.

    Article  CAS  PubMed  Google Scholar 

  22. Schidlowski, M., Appel, P. W. U., Eichmann, R., Junge, C. E. (1979) Carbon isotope geochemistry of the 3.7 X 109-yr-old Isua sediments, West Greenland–-Implications for the Archaean Carbon and Oxygen Cycles. Geochimica et Cosmochimica Acta 43, 189–99.

    Article  CAS  Google Scholar 

  23. Grotzinger, J. P., Knoll, A. H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Ann Rev Earth Planet Sci 27, 313–58.

    Article  CAS  Google Scholar 

  24. Schopf, J. W. (1993) Microfossils of the early Archean Apex Chert–-new evidence of the antiquity of life. Science 260, 640–6.

    Article  CAS  PubMed  Google Scholar 

  25. Brocks, J. J., Logan, G. A., Buick, R., Summons, R. E. (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–6.

    Article  CAS  PubMed  Google Scholar 

  26. Anbar, A. D., Duan, Y., Lyons, T. W., Arnold, G. L., Kendall, B., Creaser, R. A., Kaufman, A. J., Gordon, G. W., Scott, C., Garvin, J., Buick, R. (2007) A whiff of oxygen before the great oxidation event? Science 317, 1903–6.

    Article  CAS  PubMed  Google Scholar 

  27. Canfield, D. E. (1998) A new model for Proterozoic ocean chemistry. Nature 396, 450–3.

    Article  CAS  Google Scholar 

  28. Catling, D. C., Zahnle, K. J., Mckay, C. (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–43.

    Article  CAS  PubMed  Google Scholar 

  29. Farquhar, J., Bao, H., Thiemens, M. (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tice, M. M., Lowe, D. R. (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431, 549–52.

    Article  CAS  PubMed  Google Scholar 

  31. Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J. A., Woese, C. R. (1987) The green non-sulfur bacteria: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9, 47–53.

    CAS  PubMed  Google Scholar 

  32. Blankenship, R. E. (1992) Origin and early evolution of photosynthesis. Photosynth Res 33, 91–111.

    Article  CAS  PubMed  Google Scholar 

  33. Nitschke, W., Setif, P., Liebl, U., Feiler, U., Rutherford, A. W. (1990) Reaction center photochemistry of Heliobacterium chlorum. Biochemistry 29, 11079–88.

    CAS  Google Scholar 

  34. Vermaas, W. F. (1994) Evolution of heliobacteria: implications for photosynthetic reaction center complexes. Photosynth Res 41, 285–94.

    Article  CAS  PubMed  Google Scholar 

  35. Schubert, W. D., Klukas, O., Saenger, W., Witt, H. T., Fromme, P., Krauss, N. (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J Mol Biol 280, 297–314.

    Article  CAS  PubMed  Google Scholar 

  36. Michel, H., Deisenhofer, J. (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27, 1–7.

    Article  CAS  Google Scholar 

  37. Olson, J. M., Pierson, B. K. (1987) Evolution of reaction centers in photosynthetic prokaryotes. Int Rev Cytol 108, 209–48.

    Article  CAS  PubMed  Google Scholar 

  38. Burke, D. H., Hearst, J. E., Sidow, A. (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci U S A 90, 7134–8.

    Article  CAS  PubMed  Google Scholar 

  39. Xiong, J., Fischer, W. M., Inoue, K., Nakahara, M., Bauer, C. E. (2000) Molecular evidence for the early evolution of photosynthesis. Science 289, 1724–30.

    Article  CAS  PubMed  Google Scholar 

  40. Sadekar, S., Raymond, J., Blankenship, R. E. (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23, 2001–7.

    Article  CAS  PubMed  Google Scholar 

  41. Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y., Blankenship, R. E. (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298, 1616–20.

    Article  CAS  PubMed  Google Scholar 

  42. Bryant, D. A., Costas, A. M., Maresca, J. A., Chew, A. G., Klatt, C. G., Bateson, M. M., Tallon, L. J., Hostetler, J., Nelson, W. C., Heidelberg, J. F., Ward, D. M. (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317, 523–6.

    Article  CAS  PubMed  Google Scholar 

  43. Klappenbach, J. A., Pierson, B. K. (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats. Arch Microbiol 181, 17–25.

    Article  CAS  PubMed  Google Scholar 

  44. Igarashi, N., Harada, J., Nagashima, S., Matsuura, K., Shimada, K., Nagashima, K. V. (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52, 333–41.

    CAS  PubMed  Google Scholar 

  45. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F., Papke, R. T. (2006) Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16, 1099–108.

    Article  CAS  PubMed  Google Scholar 

  46. Mulkidjanian, A. Y., Koonin, E. V., Makarova, K. S., Mekhedov, S. L., Sorokin, A., Wolf, Y. I., Dufresne, A., Partensky, F., Burd, H., Kaznadzey, D., Haselkorn, R., Galperin, M. Y. (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103, 13126–31.

    Article  CAS  PubMed  Google Scholar 

  47. Granick, S. (1965) Evolution of heme and chlorophyll, in Evolving Genes and Proteins (Vogel, H. J., ed.) Academic Press, New York 67–8.

    Google Scholar 

  48. Granick, S., Beale, S. I. (1978) Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol Relat Areas Mol Biol 46, 33–203.

    CAS  PubMed  Google Scholar 

  49. Blankenship, R. E., Hartman, H. (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23, 94–7.

    Article  CAS  PubMed  Google Scholar 

  50. Raymond, J., Blankenship, R. E. (2007) The origin of the oxygen-evolving complex. Coord Chem Rev 252, 377–83.

    Article  Google Scholar 

  51. Mccord, J. M., Keele, B. B., Jr., Fridovich, I. (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A 68, 1024–7.

    Article  CAS  PubMed  Google Scholar 

  52. Klotz, M. G., Klassen, G. R., Loewen, P. C. (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol Biol Evol 14, 951–8.

    CAS  PubMed  Google Scholar 

  53. Klotz, M. G., Loewen, P. C. (2003) The molecular evolution of catalatic hydroperoxidases: evidence for multiple lateral transfer of genes between prokaryota and from bacteria into eukaryota. Mol Biol Evol 20, 1098–112.

    Article  CAS  PubMed  Google Scholar 

  54. Fast, N. M., Law, J. S., Williams, B. A., Keeling, P. J. (2003) Bacterial catalase in the microsporidian Nosema locustae: implications for microsporidian metabolism and genome evolution. Eukaryot Cell 2, 1069–75.

    Article  CAS  PubMed  Google Scholar 

  55. Faguy, D. M., Doolittle, W. F. (2000) Horizontal transfer of catalase-peroxidase genes between archaea and pathogenic bacteria. Trends Genet 16, 196–7.

    Article  CAS  PubMed  Google Scholar 

  56. Amo, T., Atomi, H., Imanaka, T. (2002) Unique presence of a manganese catalase in a hyperthermophilic archaeon, Pyrobaculum calidifontis VA1. J Bacteriol 184, 3305–12.

    Article  CAS  PubMed  Google Scholar 

  57. Choudhury, S. B., Lee, J. W., Davidson, G., Yim, Y. I., Bose, K., Sharma, M. L., Kang, S. O., Cabelli, D. E., Maroney, M. J. (1999) Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry 38, 3744–52.

    Article  CAS  PubMed  Google Scholar 

  58. Wolfe-Simon, F., Starovoytov, V., Reinfelder, J. R., Schofield, O., Falkowski, P. G. (2006) Localization and role of manganese superoxide dismutase in a marine diatom. Plant Physiol 142, 1701–9.

    Article  CAS  PubMed  Google Scholar 

  59. Smith, M. W., Doolittle, R. F. (1992) A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol 34, 175–84.

    CAS  PubMed  Google Scholar 

  60. Fink, R. C., Scandalios, J. G. (2002) Molecular evolution and structure–-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys 399, 19–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Raymond, J. (2009). The Role of Horizontal Gene Transfer in Photosynthesis, Oxygen Production, and Oxygen Tolerance. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics