Skip to main content

Chemical Tagging Strategies for Mass Spectrometry-Based Phospho-proteomics

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 527))

Summary

The study of protein phosphorylation in combination with chemical methods may serve several purposes. The removal of the phosphate group from phosphoserine and -threonine residues by β-elimination has been employed to improve sensitivity for mass spectrometric detection and to attach affinity tags for phosphopeptide enrichment. More recently, phosphoramidate chemistry has been shown to be another promising tool for enriching phosphorylated peptides, and other phosphate-directed reactions may also be applicable to the study of the phosphoproteome in the future. In recent years, the combination of large-scale phospho-proteomics studies with stable isotope labeling for quantification purposes has become of growing importance, frequently involving the introduction of chemical tags such as iTRAQ. In this chapter, we will highlight several key strategies that involve chemical tagging reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukherji, M. (2005) Phosphoproteomics in analyzing signaling pathways. Exp. Rev. Proteomics 2, 117–128.

    Article  CAS  Google Scholar 

  2. Reinders, J. and Sickmann, A. (2005) State- of-the-art in phosphoproteomics. Proteomics5, 4052–4061.

    Article  PubMed  CAS  Google Scholar 

  3. Delom, F. and Chevet, E. (2006) Phospho- protein analysis: from proteins to proteomes. Proteome Sci.4, 15 (article number).

    Article  PubMed  Google Scholar 

  4. Pinkse, M. W. H. and Heck, A. J. R. (2006) Essential enrichment strategies in phospho- proteomics. Drug Discov. Today: Technol. 3, 331–337.

    Article  Google Scholar 

  5. Collins, M. O., Yu, L. and Choudhary, J. S. (2007) Analysis of protein phosphorylation on a proteome-scale. Proteomics. 7, 2751–2768.

    Article  PubMed  CAS  Google Scholar 

  6. Julka, S. and Regnier, F. (2004) Quantification in proteomics through stable isotope coding: a review. J. Proteome Res. 3, 350–363.

    Article  PubMed  CAS  Google Scholar 

  7. Leitner, A. and Lindner, W. (2004) Current chemical tagging strategies for proteome analysis by mass spectrometry. J. Chromatogr. B813, 1–26.

    Article  CAS  Google Scholar 

  8. Mirzaei, H. and Regnier, F. (2005) Structure specific chromatographic selection in targeted proteomics. J. Chromatogr. B817, 23–34.

    Article  CAS  Google Scholar 

  9. Leitner, A. and Lindner, W. (2006) Chemistry meets proteomics: The use of chemical tagging reactions for MS-based proteomics. Proteomics. 6, 5418–5434.

    Article  PubMed  CAS  Google Scholar 

  10. Gevaert, K., Damme, P. V., Ghesquière, B., Impens, F., Martens, L. et al. (2007) A la carte proteomics with an emphasis on gel-free techniques. Proteomics. 7, 2698–2718.

    Article  PubMed  CAS  Google Scholar 

  11. McLachlin, D. T. and Chait, B. T. (2003) Improved beta-elimination-based affinity purification strategy for enrichment of phos- phopeptides. Anal. Chem. 75, 6826–6836.

    Article  PubMed  CAS  Google Scholar 

  12. Wells, L., Vosseller, K., Cole, R. N., Cronshaw, J. M., Matunis, M. J. et al. (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-transla- tional modifications. Mol. Cell. Proteomics1, 791–804.

    Article  PubMed  CAS  Google Scholar 

  13. Vosseller, K., Hansen, K. C., Chalkley, R. J., Trinidad, J. C., Wells, L. et al. (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics5, 388–398.

    Article  PubMed  CAS  Google Scholar 

  14. Poot, A. J., Ruijter, E., Nuijens, T., Dirksen, E. H. C., Heck, A. J. R. et al. (2006) Selective enrichment of Ser-/Thr-phosphorylated pep- tides in the presence of Ser-/Thr-glycosylated peptides. Proteomics. 6, 6394–6399.

    Article  PubMed  CAS  Google Scholar 

  15. Chu, B. C. F., Wahl, G. M. and Orgel, L. E. (1983) Derivatization of unprotected polynu- cleotides. Nucleic Acids Res. 11, 6513–6529.

    Article  PubMed  CAS  Google Scholar 

  16. Goshe, M. B., Conrads, T. P., Panisko, E. A., Angell, N. H., Veenstra, T. D. et al. (2001) Phosphoprotein Isotope-Coded Affinity Tag Approach for Isolating and Quantitating Phosphopeptides in Proteome-Wide Analyses. Anal. Chem. 73, 2578–2586.

    Article  PubMed  CAS  Google Scholar 

  17. Oda, Y., Nagasu, T. and Chait, B. T. (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphopro- teome. Nat. Biotechnol. 19, 379–382.

    Article  PubMed  CAS  Google Scholar 

  18. Adamczyk, M., Gebler, J. C. and Wu, J. (2001) Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spec- trometry. Rapid Commun. Mass Spectrom. 15, 1481–1488.

    Article  PubMed  CAS  Google Scholar 

  19. Goshe, M. B., Veenstra, T. D., Panisko, E. A., Conrads, T. P., Angell, N. H. et al. (2002) Phosphoprotein isotope-coded affinity tags: application to the enrichment and identification of low-abundance phosphoproteins. Anal. Chem. 74, 607–616.

    Article  PubMed  CAS  Google Scholar 

  20. Veken, P. v. d., Dirksen, E. H. C., Ruijter, E., Elgersma, R. C., Heck, A. J. R. et al. (2005) Development of a novel chemical probe for the selective enrichment of phosphorylated serine- and threonine-containing peptides. ChemBioChem. 6, 2271–2280.

    Article  PubMed  Google Scholar 

  21. Jalili, P. R., Sharma, D. and Ball, H. L. (2007) Enhancement of ionization efficiency and selective enrichment of phosphorylated pep- tides from complex protein mixtures using a reversible poly-histidine tag. J. Am. Soc. Mass Spectrom. 18, 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  22. Go, E. P., Uritboonthai, W., Apon, J. V., Trauger, S. A., Nordstrom, A. et al. (2007) Selective metabolite and peptide capture/ mass detection using fluorous affinity tags. J. Proteome Res. 6, 1492–1499.

    Article  PubMed  CAS  Google Scholar 

  23. Stevens, S. M., Jr, Chung, A. Y., Chow, M. C., McClung, S. H. et al. (2005) Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry. Rapid Commun. Mass Spectrom. 19, 2157–2162.

    Article  PubMed  CAS  Google Scholar 

  24. Amoresano, A., Marino, G., Cirulli, C. and Quemeneur, E. (2004) Mapping phospho- rylation sites: a new strategy based on the use of isotopically-labelled dithiothreitol and mass spectrometry. Eur. J. Mass Spectrom. 10, 401–412.

    Article  CAS  Google Scholar 

  25. Thaler, F., Valasina, B., Baldi, R., Xie, J., Stewart, A. et al. (2003) A new approach to phosphoserine and phosphothreonine analysis in peptides and proteins: chemical modification, enrichment via solid-phase reversible binding, and analysis by mass spectrometry. Anal. Bioanal. Chem. 376, 366–373.

    PubMed  CAS  Google Scholar 

  26. Chowdhury, S. M., Munske, G. R., Siems, W. F. and Bruce, J. E. (2005) A new maleimide- bound acid-cleavable solid-support reagent for profiling phosphorylation. Rapid Com- mun. Mass Spectrom. 19, 899–909.

    Article  CAS  Google Scholar 

  27. Qian, W.-J., Goshe, M. B., II, Camp, D. G., Yu, L.-R., Tang, K. et al. (2003) Phosphopro- tein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem. 75, 5441–5450.

    Article  PubMed  CAS  Google Scholar 

  28. Tseng, H.-C., Ovaa, H., Wei, N. J. C., Ploegh, H. and Tsai, L.-H. (2005) Phosphoproteomic analysis with solid-phase capture-release-tag approach. Chem. Biol. 12, 769–777.

    Article  PubMed  CAS  Google Scholar 

  29. Weckwerth, W., Wilmitzer, L. and Fiehn, O. (2000) Comparative quantification and ident- fication of phosphoproteins using stable isotope labeling and liquid chromatography/ mass spectrometry. Rapid Commun. Mass Spectrom. 14, 1677–1681.

    Article  PubMed  CAS  Google Scholar 

  30. DeGnore, J. P. and Qin, J. (1998) Fragmentation of phosphopeptides in an ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 1175–1188.

    Article  PubMed  CAS  Google Scholar 

  31. Jaffe, H., Veeranna and Pant, H. C. (1998) Characterization of serine and threonine phosphorylation sites in beta-elimination ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Biochemistry. 37, 16211–16224.

    Article  PubMed  CAS  Google Scholar 

  32. Molloy, M. P. and Andrews, P. C. (2001) Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry. Anal. Chem. 73, 5387–5394.

    Article  PubMed  CAS  Google Scholar 

  33. Klemm, C., Schröder, S., Glückmann, M., Beyermann, M. and Krause, E. (2004) Deri- vatization of phosphorlyated peptides with Sand N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ ionization mass spectrometry. Rapid Com- mun. Mass Spectrom. 18, 2697–2705.

    Article  CAS  Google Scholar 

  34. Arrigoni, G., Resjö, S., Levander, F., Nilsson, R., Degerman, E. et al. (2006) Chemical deriva- tization of phosphoserine and phosphothreo- nine containing peptides to increase sensitivity for MALDI-based analysis and for selectivity of MS/MS analysis. Proteomics. 6, 757–766.

    Article  PubMed  CAS  Google Scholar 

  35. Ahn, Y. H., Ji, E. S., Lee, J. Y., Cho, K. and Yoo, J. S. (2007) Arginine-mimic labeling with guanidinoethanethiol to increase mass sensitivity of lysine-terminated phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Com- mun. Mass Spectrom. 21, 2204–2210.

    Article  CAS  Google Scholar 

  36. Ahn, Y. H., Ji, E. S., Kwon, K. H., Lee, J. Y., Cho, K. et al. (2007) Protein phosphor- ylation analysis by site-specific arginine-mimic labeling in gel electrophoresis and matrix- assisted laser desorption/ionization time-of- flight mass spectrometry. Anal. Biochem. 370, 77–86.

    Article  PubMed  CAS  Google Scholar 

  37. Li, H. and Sundararajan, N. (2007) Charge switch derivatization of phosphopeptides for enhanced surface-enhanced raman spectros- copy and mass spectrometry detection. J. Pro- teome Res. 6, 2973–2977.

    CAS  Google Scholar 

  38. Zhou, H., Watts, J. D. and Aebersold, R. (2001) A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378.

    Article  PubMed  CAS  Google Scholar 

  39. Tao, W. A., Wollscheid, B., O'Brien, R., Eng, J. K., Li, X.-j. et al. (2005) Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spec- trometry. Nat. Methods. 2, 591–598.

    Article  PubMed  CAS  Google Scholar 

  40. Bodenmiller, B., Mueller, L. N., Pedrioli, P. G. A., Pflieger, D., Jünger, M. A. et al. (2007) An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogasterKc167 cells. Mol. BioSyst. 3, 275–286.

    Article  PubMed  CAS  Google Scholar 

  41. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B. and Aebersold, R. (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat. Methods4, 231–237.

    Article  PubMed  CAS  Google Scholar 

  42. Lansdell, T. A. and Tepe, J. J. (2004) Isolation of phosphopeptides using solid phase enrichment. Tetrahedron Lett. 45, 91–93.

    Article  CAS  Google Scholar 

  43. Warthaka, M., Karwowska-Desaulniers, P. and Pflum, M. K. H. (2006) Phosphopeptide modification and enrichment by oxidation- reduction condensation. ACS Chem. Biol.1, 697–701.

    Article  PubMed  CAS  Google Scholar 

  44. Ong, S.-E. and Mann, M. (2005) Mass spec- trometry-based proteomics turns quantitative. Nat. Chem. Biol.1, 252–262.

    Article  PubMed  CAS  Google Scholar 

  45. Julka, S. and Regnier, F. E. (2005) Recent advancements in differential proteomics based on stable isotope coding. Brief. Funct. Genom. Proteom. 4, 158–177.

    Article  CAS  Google Scholar 

  46. Chen, X., Sun, L., Yu, Y., Xue, Y. and Yang, P. (2007) Amino acid-coded tagging approaches in quantitative proteomics. Exp. Rev. Proteom- ics4, 25–37.

    Article  CAS  Google Scholar 

  47. Beynon, R. J. and Pratt, J. M. (2005) Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics4, 857–872.

    Article  PubMed  CAS  Google Scholar 

  48. Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958.

    Article  PubMed  CAS  Google Scholar 

  49. Bonenfant, D., Schmelzle, T., Jacinto, E., Crespo, J. L., Mini, T. et al. (2003) Quantita- tion of changes in protein phosphorylation: A simple method based on stable isotope labeling and mass spectrometry. Proc. Natl. Acad. Sci. USA100, 880–885.

    Article  PubMed  CAS  Google Scholar 

  50. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M. et al. (2002) Phosphoproteome analysis by mass spec- trometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305.

    Article  PubMed  CAS  Google Scholar 

  51. Ficarro, S., Chertihin, O., Westbrook, V. A., White, F., Jayes, F. et al. (2003) Phos- phoproteome analysis of capacitated human sperm – evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin- containing protein/p97 during capacitation. J. Biol. Chem. 278, 11579–11589.

    Article  PubMed  CAS  Google Scholar 

  52. Brill, L. M., Salomon, A. R., Ficarro, S. B., Mukherji, M., Stettler-Gill, M. et al. (2004) Robust phosphoproteomic profiling of tyro- sine phosphorylation sites from human T Cells using immobilized metal affinity chro- matography and tandem mass spectrometry. Anal. Chem. 76, 2763–2772.

    Article  PubMed  CAS  Google Scholar 

  53. Smith, J. C., Duchesne, M. A., Tozzi, P., Ethier, M. and Figeys, D. (2007) A differential phos- phoproteomic analysis of retinoic acid-treated P19 Cells. J. Proteome Res. 6, 3174–3186.

    Article  PubMed  CAS  Google Scholar 

  54. Kang, J.-H., Katayama, Y., Han, A., Shigaki, S., Oishi, J. et al. (2007) Mass-tag technology responding to intracellular signals as a novel assay system for the diagnosis of tumor. J. Am. Soc. Mass Spectrom. 18, 106–112.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, X., Jin, Q. K., Carr, S. A. and Annan, R. S. (2002) N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiom- etry. Rapid Commun. Mass Spectrom. 16, 2325–2332.

    Article  PubMed  CAS  Google Scholar 

  56. Jin, M., Bateup, H., Padovan, J. C., Green- gard, P., Nairn, A. C. et al. (2005) Quantitative analysis of protein phosphorylation in mouse brain by hypothesis-driven multistage mass spectrometry. Anal. Chem. 77, 7845–7851.

    Article  PubMed  CAS  Google Scholar 

  57. Zappacosta, F., Collingwood, T. S., Huddle- ston, M. J. and Annan, R. S. (2006) A quantitative results-driven approach to analyzing multisite protein phosphorylation: the phos- phate-dependent phosphorylation profile of the transcription factor Pho4. Mol.Cell. Pro- teomics5, 2019–2030.

    Article  CAS  Google Scholar 

  58. Riggs, L., Seeley, E. H. and Regnier, F. E. (2005) Quantification of phosphoproteins with global internal standard technology. J. Chromatogr. B817, 89–96.

    Article  CAS  Google Scholar 

  59. Huang, S.-Y., Tsai, M.-L., Wu, C.-J., Hsu, J.-L., Ho, S.-H. et al. (2006) Quantitation of protein phosphorylation in pregnant rat uteri using stable isotope dimethyl labeling coupled with IMAC. Proteomics.6, 1722–1734.

    Article  PubMed  CAS  Google Scholar 

  60. Huang, S.-Y., Tsai, M.-L., Chen, G.-Y., Wu, C.-J. and Chen, S.-H. (2007) A systematic MS-based approach for identifying in vitro substrates of PKA and PKG in rat uteri. J. Pro- teome Res. 6, 2674–2684.

    CAS  Google Scholar 

  61. Smolka, M. B., Albuquerque, C. P., Chen, S.-h., Schmidt, K. H., Wei, X. X. et al. (2005) Dynamic changes in protein-protein interaction and protein phosphorylation probed with amine-reactive isotope tag. Mol. Cell. Proteom- ics4, 1358–1369.

    Article  CAS  Google Scholar 

  62. Smolka, M. B., Chen, S.-H., Maddox, P. S., Enserink, J. M., Albuquerque, C. P. et al. (2006) An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth. J. Cell. Biol.175, 743–753.

    Article  PubMed  CAS  Google Scholar 

  63. Smolka, M. B., Albuquerque, C. P., Chen, S.-h. and Zhou, H. (2007) Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci.USA104, 10364–10369.

    Article  PubMed  CAS  Google Scholar 

  64. Ross, P. L., Huang, Y. L. N., Marchese, J. N., Williamson, B., Parker K. et al. (2004) Multiplexed protein quantitation on Saccharomyces cerevisiaeusing amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  65. Choe, L., D'Ascenzo, M., Relkin, N. R., Pappin, D., Ross, P. et al. (2007) 8-Plex quanti- tation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease. Proteomics 7, 3651–3660.

    Article  PubMed  CAS  Google Scholar 

  66. Pierce, A., Unwin, R. D., Evans, C. A., Griffiths, S., Carney, L. et al. (2008) Eight- channel iTRAQ enables comparison of the activity of 6 leukaemogenic tyrosine kinases. Mol. Cell. Proteomics 7, 853–863.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, Y., Wolf-Yadlin, A., Ross, P. L., Pappin, D. J., Rush, J. et al. (2005) Time- resolved mass spectrometry of tyrosine phos- phorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell. Proteomics4, 1240–1250.

    Article  PubMed  CAS  Google Scholar 

  68. Sachon, E., Mohammed, S., Bache, N. and Jensen, O. N. (2006) Phosphopeptide quan- titation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: applications to proteins isolated by gel elec- trophoresis. Rapid Commun. Mass Spectrom. 20, 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  69. Wolf-Yadlin, A., Kumar, N., Zhang, Y., Hautaniemi, S., Zaman, M. et al. (2006) Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol. Syst. Biol. 2, 54 (article number).

    Article  PubMed  Google Scholar 

  70. Williamson, B. L., Marchese, J. and Morrice, N. A. (2006) Automated identification and quantification of protein phospho- rylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol. Cell. Proteomics5, 337–346.

    PubMed  CAS  Google Scholar 

  71. Jones, A. M. E., Bennett, M. H., Mansfield, J. W. and Grant, M. (2006) Analysis of the defence phosphoproteome of Arabidopsis thalianausing differential mass tagging. Proteomics 6, 4155–4165.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou, F., Galan, J., Geahlen, R. L. and Tao, W. A. (2007) A novel quantitative proteomics strategy to study phosphorylation-dependent peptide-protein interactions. J. Proteome Res. 6, 133–140.

    Article  PubMed  CAS  Google Scholar 

  73. Wolf-Yadlin, A., Hautaniemi, S., Lauffen- burger, D. A. and White, F. M. (2007) Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA104, 5860–5865.

    Article  PubMed  CAS  Google Scholar 

  74. Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche, M. et al. (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Leitner, A., Lindner, W. (2009). Chemical Tagging Strategies for Mass Spectrometry-Based Phospho-proteomics. In: Graauw, M.d. (eds) Phospho-Proteomics. Methods in Molecular Biology™, vol 527. Humana Press. https://doi.org/10.1007/978-1-60327-834-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-834-8_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-833-1

  • Online ISBN: 978-1-60327-834-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics