Skip to main content

Monitoring Homologous Recombination Following Replication Fork Perturbation in the Fission Yeast Schizosaccharomyces pombe

  • Protocol
  • First Online:
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 521))

Summary

Replication forks (RFs) frequently encounter barriers or lesions in template DNA that can cause them to stall and/or break. Efficient genome duplication therefore depends on multiple mechanisms that variously act to stabilize, repair, and restart perturbed RFs. Integral to at least some of these mechanisms are homologous recombination (HR) proteins, but our knowledge of how they act to ensure high-fidelity genome replication remains incomplete. To help better understand the relationship between DNA replication and HR, fission yeast strains have been engineered to contain intrachromosmal recombination substrates consisting of non-tandem direct repeats of ade6 heteroalleles. The substrates have been modified to include site-specific RF barriers within the duplication. Importantly, direct repeat recombinants appear to arise predominantly during DNA replication via sister chromatid interactions and are induced by factors that perturb RFs. Using simple plating experiments to assay recombinant formation, these strains have proved to be useful tools in monitoring the effects of impeding RFs on HR and its genetic control. The strains are available on request, and here we describe in detail how some of them can be used to determine the effect of your mutation of choice on spontaneous, DNA damage-induced, and replication block-induced recombinant formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalgaard, J.Z. and Klar, A.J. (2001) A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev. 15, 2060–2068

    Article  PubMed  CAS  Google Scholar 

  2. Branzei, D. and Foiani, M. (2007) Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair 6, 994–1003

    Article  PubMed  CAS  Google Scholar 

  3. Lambert, S., Froget, B. and Carr, A. M. (2007) Arrested replication fork processing: interplay between checkpoints and recombination. DNA Repair 6, 1042–1061

    Article  PubMed  CAS  Google Scholar 

  4. McGlynn, P. and Lloyd, R. G. (2002) Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3, 859–870

    Article  PubMed  CAS  Google Scholar 

  5. Courcelle, J., Donaldson, J. R., Chow, K. H. and Courcelle, C. T. (2003) DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299, 1064–1067

    Article  PubMed  CAS  Google Scholar 

  6. Higgins, N. P., Kato, K. and Strauss, B. (1976) A model for replication repair in mammalian cells. J Mol Biol 101, 417–425

    Article  PubMed  CAS  Google Scholar 

  7. Lopes, M., Cotta-Ramusino, C., Pellicioli, A., Liberi, G., Plevani, P., Muzi-Falconi, M., Newlon, C. S. and Foiani, M. (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561

    Article  PubMed  CAS  Google Scholar 

  8. Sogo, J. M., Lopes, M. and Foiani, M. (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602

    Article  PubMed  CAS  Google Scholar 

  9. Heller, R. C. and Marians, K. J. (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557–562

    Article  PubMed  CAS  Google Scholar 

  10. Lopes, M., Foiani, M. and Sogo, J. M. (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21, 15–27

    Article  PubMed  CAS  Google Scholar 

  11. Michel, B., Boubakri, H., Baharoglu, Z., LeMasson, M. and Lestini, R. (2007) Recombination proteins and rescue of arrested replication forks. DNA Repair 6, 967–980

    Article  PubMed  CAS  Google Scholar 

  12. Symington, L. S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66, 630–670

    Article  PubMed  CAS  Google Scholar 

  13. Galli, A. and Schiestl, R. H. (1998) Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells. Genetics 149, 1235–1250

    PubMed  CAS  Google Scholar 

  14. Galli, A. and Schiestl, R. H. (1996) Hydroxyurea induces recombination in dividing but not in G1 or G2 cell cycle arrested yeast cells. Mutat Res 354, 69–75

    Article  PubMed  Google Scholar 

  15. Kadyk, L.C. and Hartwell, L.H. (1993) Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 133, 469–487

    PubMed  CAS  Google Scholar 

  16. Kadyk, L.C. and Hartwell, L.H. (1992) Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402

    PubMed  CAS  Google Scholar 

  17. Paques, F. and Haber, J.E. (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63, 349–404

    PubMed  CAS  Google Scholar 

  18. Klein, H. L. (1995) Genetic control of intrachromosomal recombination. Bioessays 17, 147–159

    Article  PubMed  CAS  Google Scholar 

  19. Ahn, J. S., Osman, F. and Whitby, M. C. (2005) Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J 24, 2011–2023

    Article  PubMed  CAS  Google Scholar 

  20. Osman, F., Adriance, M. and McCready, S. (2000) The genetic control of spontaneous and UV-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe. Curr Genet 38, 113–125

    Article  PubMed  CAS  Google Scholar 

  21. Alseth, I., Osman, F., Korvald, H., Tsaneva, I., Whitby, M. C., Seeberg, E. and Bjoras, M. (2005) Biochemical characterization and DNA repair pathway interactions of Mag1-mediated base excision repair in Schizosaccharomyces pombe. Nucleic Acids Res 33, 1123–1131

    Article  PubMed  CAS  Google Scholar 

  22. Osman, F., Bjoras, M., Alseth, I., Morland, I., McCready, S., Seeberg, E. and Tsaneva, I. (2003) A new Schizosaccharomyces pombe base excision repair mutant, nth1, reveals overlapping pathways for repair of DNA base damage. Mol Microbiol 48, 465–480

    Article  PubMed  CAS  Google Scholar 

  23. Osman, F., Tsaneva, I. R., Whitby, M. C. and Doe, C. L. (2002) UV irradiation causes the loss of viable mitotic recombinants in Schizosaccharomyces pombe cells lacking the G(2)/M DNA damage checkpoint. Genetics 160, 891–908

    PubMed  CAS  Google Scholar 

  24. Cummins, J. E. and Mitchison, J. M. (1967) Adenine uptake and pool formation in the fission yeast Schizosaccharomyces pombe. Biochim Biophys Acta 136, 108–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Senior Research Fellowship awarded to MCW.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Osman, F., Whitby, M.C. (2009). Monitoring Homologous Recombination Following Replication Fork Perturbation in the Fission Yeast Schizosaccharomyces pombe . In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-815-7_31

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-814-0

  • Online ISBN: 978-1-60327-815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics