Skip to main content

Assays Used to Study the DNA Replication Checkpoint in Fission Yeast

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 521))

Summary

The DNA replication checkpoint, also known as the intra-S or S-phase checkpoint, plays a central role in ensuring the accuracy of DNA replication. When replication is impeded by DNA damage or other conditions, this checkpoint delays cell cycle progression and coordinates resumption of replication with DNA repair pathways. One of its critical functions is to stabilize stalled replication forks in a replication-competent state, presumably by maintaining proper assembly of replisome components and preserving DNA structures. Here we describe a series of assays used to study the replication checkpoint. These assays allow us to investigate the specific functions of proteins involved in the replication checkpoint in fission yeast.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Boddy, M. N., and Russell, P. (2001) DNA replication checkpoint.Curr. Biol. 11, R953-R956.

    Article  Google Scholar 

  2. Osborn, A. J., Elledge, S. J., and Zou, L. (2002) Checking on the fork: the DNA-replication stress-response pathway.Trends Cell Biol 12, 509–16.

    Article  Google Scholar 

  3. Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints.Annu Rev Genet 36, 617–56.

    Article  Google Scholar 

  4. McGlynn, P., and Lloyd, R. G. (2002) Recombinational repair and restart of damaged replication forks.Nat Rev Mol Cell Biol 3, 859–70.

    Article  Google Scholar 

  5. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases.Genes Dev 15, 2177–96.

    Article  Google Scholar 

  6. Kastan, M. B., and Bartek, J. (2004) Cell-cycle checkpoints and cancer.Nature 432, 316–23.

    Article  Google Scholar 

  7. Khanna, K. K., and Jackson, S. P. (2001) DNA double-strand breaks: signaling, repair and the cancer connection.Nat Genet 27, 247–54.

    Article  Google Scholar 

  8. Kolodner, R. D., Putnam, C. D., and Myung, K. (2002) Maintenance of genome stability inSaccharomyces cerevisiae.Science 297, 552–7.

    Article  Google Scholar 

  9. McGowan, C. H. (2002) Checking in on Cds1 (Chk2): A checkpoint kinase and tumor suppressor.Bioessays 24, 502–11.

    Article  Google Scholar 

  10. Paulovich, A. G., Toczyski, D. P., and Hartwell, L. H. (1997) When checkpoints fail.Cell 88, 315–21.

    Article  Google Scholar 

  11. Zhou, B. B., and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective.Nature 408, 433–9.

    Article  Google Scholar 

  12. Rouse, J., and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage.Science 297, 547–51.

    Article  Google Scholar 

  13. O’Connell, M. J., Walworth, N. C., and Carr, A. M. (2000) The G2-phase DNA-damage checkpoint.Trends Cell Biol 10, 296–303.

    Article  Google Scholar 

  14. Rhind, N., and Russell, P. (2000) Checkpoints: it takes more than time to heal some wounds.Curr Biol 10, R908–11.

    Article  Google Scholar 

  15. Rhind, N., and Russell, P. (2000) Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways.J Cell Sci 113 (Pt 22), 3889–96.

    Google Scholar 

  16. Tanaka, K., and Russell, P. (2001) Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1.Nat Cell Biol 3, 966–72.

    Article  Google Scholar 

  17. Zhao, H., Tanaka, K., Noguchi, E., Noguchi, C., and Russell, P. (2003) Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast.Mol Cell Biol 23, 8395–403.

    Article  Google Scholar 

  18. Noguchi, E., Noguchi, C., Du, L. L., and Russell, P. (2003) Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1.Mol Cell Biol 23, 7861–74.

    Article  Google Scholar 

  19. Noguchi, E., Noguchi, C., McDonald, W. H., Yates, J. R., III, and Russell, P. (2004) Swi1 and Swi3 are components of a replication fork protection complex in fission yeast.Mol Cell Biol 24, 8342–55.

    Article  Google Scholar 

  20. Matsumoto, S., Ogino, K., Noguchi, E., Russell, P., and Masai, H. (2005) Hsk1-Dfp1/Him1, the Cdc7-Dbf4 kinase inSchizosaccharomyces pombe, associates with Swi1, a component of the replication fork protection complex.J Biol Chem 280, 42536–42.

    Article  Google Scholar 

  21. Takeda, T., Ogino, K., Tatebayashi, K., Ikeda, H., Arai, K., and Masai, H. (2001) Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast.Mol Biol Cell 12, 1257–74.

    Google Scholar 

  22. Ansbach, A. B., Noguchi, C., Klansek, I. W., Heidlebaugh, M., Nakamura, T. M., and Noguchi, E. (2008) RFCCtf18 and the Swi1–Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion inSchizosaccharomyces pombe.Mol Biol Cell 19, 595–607.

    Article  Google Scholar 

  23. Capasso, H., Palermo, C., Wan, S., Rao, H., John, U. P., O’Connell, M. J., and Walworth, N. C. (2002) Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest.J Cell Sci 115, 4555–64.

    Article  Google Scholar 

  24. Lindsay, H. D., Griffiths, D. J., Edwards, R. J., Christensen, P. U., Murray, J. M., Osman, F., Walworth, N., and Carr, A. M. (1998) S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response inSchizosaccharomyces pombe.Genes Dev 12, 382–95.

    Article  Google Scholar 

  25. Walworth, N., Davey, S., and Beach, D. (1993) Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2.Nature 363, 368–71.

    Article  Google Scholar 

  26. Wan, S., Capasso, H., and Walworth, N. C. (1999) The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast.Yeast 15, 821–8.

    Article  Google Scholar 

  27. Sommariva, E., Pellny, T. K., Karahan, N., Kumar, S., Huberman, J. A., and Dalgaard, J. Z. (2005)Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 are components of a novel S-phase response pathway to alkylation damage.Mol Cell Biol 25, 2770–84.

    Article  Google Scholar 

  28. Lopes, M., Cotta-Ramusino, C., Pellicioli, A., Liberi, G., Plevani, P., Muzi-Falconi, M., Newlon, C. S., and Foiani, M. (2001) The DNA replication checkpoint response stabilizes stalled replication forks.Nature 412, 557–61.

    Article  Google Scholar 

  29. Paciotti, V., Clerici, M., Scotti, M., Lucchini, G., and Longhese, M. P. (2001) Characterization of mec1 kinase-deficient mutants and of new hypomorphic mec1 alleles impairing subsets of the DNA damage response pathway.Mol Cell Biol 21, 3913–25.

    Article  Google Scholar 

  30. Sogo, J. M., Lopes, M., and Foiani, M. (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects.Science 297, 599–602.

    Article  Google Scholar 

  31. Tercero, J. A., and Diffley, J. F. (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint.Nature 412, 553–7.

    Article  Google Scholar 

  32. Tercero, J. A., Longhese, M. P., and Diffley, J. F. (2003) A central role for DNA replication forks in checkpoint activation and response.Mol Cell 11, 1323–36.

    Article  Google Scholar 

  33. Kim, W. J., Lee, S., Park, M. S., Jang, Y. K., Kim, J. B., and Park, S. D. (2000) Rad22 protein, a rad52 homologue inSchizosaccharomyces pombe, binds to DNA double-strand breaks.J Biol Chem 275, 35607–11.

    Article  Google Scholar 

  34. Ostermann, K., Lorentz, A., and Schmidt, H. (1993) The fission yeast rad22 gene, having a function in mating-type switching and repair of DNA damages, encodes a protein homolog to Rad52 ofSaccharomyces cerevisiae.Nucleic Acids Res 21, 5940–4.

    Article  Google Scholar 

Download references

We thank Adam Leman and Jordan Rapp for helpful discussion. This work was supported by a Leukemia Research Foundation grant (E.N.), Drexel University College of Medicine start-up funds (E.N.), and NIH grant GM59447 (P.R.).

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Noguchi, E., Ansbach, A.B., Noguchi, C., Russell, P. (2009). Assays Used to Study the DNA Replication Checkpoint in Fission Yeast. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-815-7_28

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-814-0

  • Online ISBN: 978-1-60327-815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics