Skip to main content

Density Transfer as a Method to Analyze the Progression of DNA Replication Forks

  • Protocol
  • First Online:
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 521))

Summary

The density transfer technique is a valuable tool to examine the progression of individual DNA replication forks. It is based on the transfer of cells from a medium containing dense isotopes to a medium with light (normal) isotopes (or vice versa), to obtain DNA sequences hybrid in density that can be identified as replicated molecules. Using specific DNA probes along a chromosome, the dense isotope transfer method allows determining the extent of replication at any position of a replicon and the rate of replication fork progression. In the eukaryotic model budding yeast, this technique has been useful to establish a role for different proteins during the elongation of chromosomal replication and to analyze the movement and stability of DNA replication forks under different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newlon, C.S., Petes, T.D., Hereford, L.M., and Fangman, W.L. (1974) Replication of yeast chromosomal DNA. Nature 247, 32–35.

    Article  PubMed  CAS  Google Scholar 

  2. Fangman, W.L., Hice, R.H., and Chlebowicz-Sledziewska, E. (1983) ARS replication during the yeast S phase. Cell 32, 831–838.

    Article  PubMed  CAS  Google Scholar 

  3. McCarroll, R.M. and Fangman, W.L. (1988) Time of replication of yeast centromeres and telomeres. Cell 54, 505–513.

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds, A.E., McCarroll, R.M., Newlon, C.S., and Fangman, W.L. (1989) Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9, 4488–4494.

    PubMed  CAS  Google Scholar 

  5. Labib, K., Tercero, J.A., and Diffley, J.F.X.(2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  6. Tercero, J.A., Labib, K., and Diffley, J.F.X. (2000) DNA synthesis at individual replication forks requires the essential initiation factor Cdc45p. EMBO J. 19, 2082–2093.

    Article  PubMed  CAS  Google Scholar 

  7. Kanemaki, M., Sanchez-Diaz, A., Gambus, A., and Labib, K. (2003) Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–724.

    Article  PubMed  CAS  Google Scholar 

  8. Tercero, J.A. and Diffley, J.F.X. (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557.

    Article  PubMed  CAS  Google Scholar 

  9. Tercero, J.A., Longhese, M.P., and Diffley, J.F.X. (2003) A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336.

    Article  PubMed  CAS  Google Scholar 

  10. Newlon, C.S., Collins, I., Dershowitz, A., Deshpande, A.M., Greenfeder, S.A., Ong, L.Y., and Theis, J.F. (1993) Analysis of replication origin function on chromosome III of Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 58, 415–423.

    Article  PubMed  CAS  Google Scholar 

  11. Friedman, K.L., Brewer, B.J., and Fangman, W.L. (1997) Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells 2,667–678.

    Article  PubMed  CAS  Google Scholar 

  12. Yamashita, M., Hori, Y., Shinomiya, T., Obuse, C., Tsurimoto, T., Yoshikawa, H., and Shirahige, K. (1997) The efficiency and timing of initiation of replication of multiple replicons of Saccharomyces cerevisiae chromosome VI. Genes Cells 2, 655–665.

    Article  PubMed  CAS  Google Scholar 

  13. Rose, M.D., Winston, F., and Hieter, P. (1990) In: Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Harbor, NY.

    Google Scholar 

Download references

Acknowledgments

The author would like to thank John F.X. Diffley for his encouragement and help in developing this method to study DNA replication fork progression, and Kristine Bousset for her introduction to the density transfer technique. J.A.Tercero’s work is funded by grants BFU2007-67445 and Consolider CSD2007-00015 from the Spanish Ministry of Education and Science (MEC), and by an institutional grant from the Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Tercero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tercero, J. (2009). Density Transfer as a Method to Analyze the Progression of DNA Replication Forks. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-815-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-814-0

  • Online ISBN: 978-1-60327-815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics