Skip to main content

Rapid DNA Amplification Using a Battery-Powered Thin-Film Resistive Thermocycler

  • Protocol
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 504))

Summary

A prototype handheld, compact, rapid thermocycler was developed for multiplex analysis of nucleic acids in an inexpensive, portable configuration. Instead of the commonly used Peltier heating/cooling element, electric thin-film resistive heater and a miniature fan enable rapid heating and cooling of glass capillaries leading to a simple, low-cost Thin-Film Resistive Thermocycler (TFRT). Computer-based pulse width modulation control yields heating rates of 6–7 K/s and cooling rates of 5 K/s. The four capillaries are closely coupled to the heater, resulting in low power consumption. The energy required by a nominal PCR cycle (20 s at each temperature) was found to be 57 ± 2 J yielding an average power of approximately 1.0 W (not including the computer and the control system). Thus the device can be powered by a standard 9 V alkaline battery (or other 9 V power supply). The prototype TFRT was demonstrated (in a benchtop configuration) for detection of three important food pathogens (E. coli ETEC, Shigella dysenteriae, and Salmonella enterica). PCR amplicons were analyzed by gel electrophoresis. The 35 cycle PCR protocol using a single channel was completed in less then 18 min. Simple and efficient heating/cooling, low cost, rapid amplification, and low power consumption make the device suitable for portable DNA amplification applications including clinical point of care diagnostics and field use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988, 239(4839), 487–491

    Article  CAS  PubMed  Google Scholar 

  2. Wittbrodt, J. and W. Erhardt. An inexpensive and versatile computer-controlled PCR machine using a Peltier element as a thermoelectric heat pump. Trends Genet. 1989, 5(7), 202–203

    Article  CAS  PubMed  Google Scholar 

  3. Wilding, P., M.A. Shoffner, and L.J. Kricka. PCR in a silicon microstructure. Clin Chem. 1994, 40(9), 1815–1818

    CAS  PubMed  Google Scholar 

  4. Khandurina, J., T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, and J.M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem. 2000, 72(13), 2995–3000

    Article  CAS  PubMed  Google Scholar 

  5. Chapin, K. and T.L. Lauderdale. Evaluation of a rapid air thermal cycler for detection of Mycobacterium tuberculosis. J Clin Microbiol. 1997, 35(8), 2157–2159

    CAS  PubMed  Google Scholar 

  6. Friedman, N.A. and D.R. Meldrum. Capillary tube resistive thermal cycling. Anal Chem. 1998, 70(14), 2997–3002

    Article  CAS  PubMed  Google Scholar 

  7. Lagally, E.T., C.A. Emrich, and R.A. Math-ies. Fully integrated PCR-capillary electro-phoresis microsystem for DNA analysis. Lab Chip. 2001, 1(2), 102–107

    Article  CAS  PubMed  Google Scholar 

  8. Oda, R.P., M.A. Strausbauch, A.F. Huhmer, N. Borson, S.R. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, and J.P. Landers. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Anal Chem. 1998, 70(20), 4361–4368

    Article  CAS  PubMed  Google Scholar 

  9. Kopp, M.U., A.J. Mello, and A. Manz. Chemical amplification: continuous-flow PCR on a chip. Science. 1998, 280(5366), 1046–1048

    Article  CAS  PubMed  Google Scholar 

  10. Park, N., S. Kim, and J.H. Hahn. Cylindrical compact thermal-cycling device for continuous-flow polymerase chain reaction. Anal Chem. 2003, 75(21), 6029–6033

    Article  CAS  PubMed  Google Scholar 

  11. Obeid, P.J., T.K. Christopoulos, H.J. Crabtree, and C.J. Backhouse. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal Chem. 2003, 75(2), 288–295

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J., M. Wabuyele, H. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, and S.A. Soper. Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate. Anal Chem. 2005, 77(2), 658–666

    Article  CAS  PubMed  Google Scholar 

  13. fjkk bjkmk and F.A. Eggerding. A one-step coupled amplification and oligonucleotide ligation procedure for multiplex genetic typing. PCR Methods Appl. 1995, 4(6), 337–345

    CAS  PubMed  Google Scholar 

  14. Tyagi, S. and F.R. Kramer. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996, 14(3), 303–308

    Article  CAS  PubMed  Google Scholar 

  15. Tyagi, S., S.A. Marras, and F.R. Kramer. Wavelength-shifting molecular beacons. Nat Biotechnol. 2000, 18(11), 1191–1196

    Article  CAS  PubMed  Google Scholar 

  16. Nazarenko, I.A., S.K. Bhatnagar, and R.J. Hohman. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res. 1997, 25(12), 2516–2521

    Article  CAS  PubMed  Google Scholar 

  17. Ririe, K.M., R.P. Rasmussen, and C.T. Wittwer. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997, 245(2), 154–160

    Article  CAS  PubMed  Google Scholar 

  18. Wittwer, C.T., K.M. Ririe, R.V. Andrew, D.A. David, R.A. Gundry, and U.J. Balis. The LightCycler: a microvolume mul-tisample fluorimeter with rapid temperature control. Biotechniques. 1997, 22(1), 176–181

    CAS  PubMed  Google Scholar 

  19. Northrup, M.A., B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, and P. Strat-ton. A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Anal Chem. 1998, 70(5), 918–922

    Article  CAS  PubMed  Google Scholar 

  20. Wittwer, C.T., M.G. Herrmann, C.N. Gun-dry, and K.S. Elenitoba-Johnson. Real-time multiplex PCR assays. Methods. 2001, 25(4), 430–442

    Article  CAS  PubMed  Google Scholar 

  21. Lagally, E.T., J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, and R.A. Mathies. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Anal Chem. 2004, 76(11), 3162–3170

    Article  CAS  PubMed  Google Scholar 

  22. Ertl, P. , C.A. Emrich, P. Singhal, and R.A. Mathies. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Anal Chem. 2004, 76(13), 3749–3755

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez, I., M. Lesaicherre, Y. Tie, Q. Zou, C. Yu, J. Singh, L.T. Meng, S. Uppili, S.F. Li, P. Gopalakrishnakone, and Z.E. Selva-nayagam. Practical integration of polymerase chain reaction amplification and electro-phoretic analysis in microfluidic devices for genetic analysis. Electrophoresis. 2003, 24(1–2), 172–178

    Article  CAS  PubMed  Google Scholar 

  24. Matsubara, Y., K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, Y. Takamura, and E. Tamiya. On-chip nanoliter-volume multiplex TaqMan polymerase chain reaction from a single copy based on counting fluorescence released microchambers. Anal Chem. 2004, 76(21), 6434–6439

    Article  CAS  PubMed  Google Scholar 

  25. Tang, Y.W., G.W. Procop, and D.H. Persing. Molecular diagnostics of infectious diseases. Clin Chem. 1997, 43(11), 2021–2038

    CAS  PubMed  Google Scholar 

  26. Sergeev, N., M. Distler, S. Courtney, S.F. Al-Khaldi, D. Volokhov, V. Chizhikov, and A. Rasooly. Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron. 2004, 20(4), 684–698

    Article  CAS  PubMed  Google Scholar 

  27. Al-Khaldi, S.F., K.M. Myers, A. Rasooly, and V. Chizhikov. Genotyping of Clostridium perfringens toxins using multiple oligonu-cleotide microarray hybridization. Mol Cell Probes. 2004, 18(6), 359–367

    Article  CAS  PubMed  Google Scholar 

  28. Volokhov, D., A. Pomerantsev, V. Kivovich, A. Rasooly, and V. Chizhikov. Identification of Bacillus anthracis by multiprobe microarray hybridization. Diagn Microbiol Infect Dis. 2004, 49(3), 163–171

    Article  CAS  PubMed  Google Scholar 

  29. Johnson, J., K. Jinneman, G. Stelma, B.G. Smith, D. Lye, J. Messer, J. Ulaszek, L. Evsen, S. Gendel, R.W. Bennett, B. Swaminathan, J. Pruckler, A. Steigerwalt, S. Kathariou, S. Yildirim, D. Volokhov, A. Rasooly, V. Chizhikov, M. Wiedmann, E. Fortes, R.E. Duvall, and A.D. Hitchins. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl Environ Microbiol. 2004, 70(7), 4256–4266

    Article  CAS  PubMed  Google Scholar 

  30. Sergeev, N., D. Volokhov, V. Chizhikov, and A. Rasooly. Simultaneous analysis of multiple staphylococcal enterotoxin genes by an oligo-nucleotide microarray assay. J Clin Microbiol. 2004, 42(5), 2134–2143

    Article  CAS  PubMed  Google Scholar 

  31. Volokhov, D., V. Chizhikov, K. Chumakov, and A. Rasooly. Microarray analysis of erythro-mycin resistance determinants. J Appl Micro-biol. 2003, 95(4), 787–798

    Article  CAS  Google Scholar 

  32. Volokhov, D., V. Chizhikov, K. Chumakov, and A. Rasooly. Microarray-based identification of thermophilic Campylobacter jejuni, C.coli, C.lari, and C.upsaliensis. J Clin Micro-biol. 2003, 41(9), 4071–4080

    Article  CAS  Google Scholar 

  33. Volokhov, D., A. Rasooly, K. Chumakov, and V. Chizhikov. Identification of Listeria species by microarray-based assay. J Clin Micro-biol. 2002, 40(12), 4720–4728

    Article  CAS  Google Scholar 

  34. Al-Khaldi, S.F., S.A. Martin, A. Rasooly, and J.D. Evans. DNA microarray technology used for studying foodborne pathogens and microbial habitats: minireview. J AOAC Int. 2002, 85(4), 906–910

    CAS  PubMed  Google Scholar 

  35. Chizhikov, V., A. Rasooly, K. Chumakov, and D.D. Levy. Microarray analysis of microbial virulence factors. Appl Environ Microbiol. 2001, 67(7), 3258–3263

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., C.B. Rauch, R.L. Stevens, R. Lenigk, J. Yang, D.B. Rhine, and P. Grodzinski. DNA amplification and hybridization assays in integrated plastic monolithic devices. Anal Chem. 2002, 74(13), 3063–3070

    Article  CAS  PubMed  Google Scholar 

  37. Higgins, J.A., S. Nasarabadi, J.S. Karns, D.R. Shelton, M. Cooper, A. Gbakima, and R.P. Koopman. A handheld real time thermal cycler for bacterial pathogen detection. Bio-sens Bioelectron. 2003, 18(9), 1115–1123

    Article  CAS  Google Scholar 

  38. Golden, J., L. Shriver-Lake, K. Sapsford, and F. Ligler. A “ do-it-yourself ” array biosensor. Methods. 2005, 37(1), 65–72

    Article  CAS  PubMed  Google Scholar 

  39. Belgrader, P., S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and M.A. Northrup. A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal Chem. 2001, 73(2), 286–289

    Article  CAS  PubMed  Google Scholar 

  40. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D. Thompson. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003, 31(13), 3497–3500

    Article  CAS  PubMed  Google Scholar 

  41. Thompson, J.D., D.G. Higgins, and T.J. Gibson. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22(22), 4673–4680

    Article  CAS  PubMed  Google Scholar 

  42. Thompson, J.D., T.J. Gibson, F. Plew-niak, F. Jeanmougin, and D.G. Higgins. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25(24), 4876– 4882

    Article  CAS  PubMed  Google Scholar 

  43. Herold, K.E. and A. Rasooly. Oligo design: a computer program for development of probes for oligonucleotide microarrays. Bio-techniques. 2003, 35(6), 1216–1221

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the FDA Office of Science and by USDA grant # 2003-35201-13784.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Herold, K.E., Sergeev, N., Matviyenko, A., Rasooly, A. (2009). Rapid DNA Amplification Using a Battery-Powered Thin-Film Resistive Thermocycler. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 504. Humana Press. https://doi.org/10.1007/978-1-60327-569-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-569-9_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-568-2

  • Online ISBN: 978-1-60327-569-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics