Skip to main content

Immobilization of Biomolecules onto Silica and Silica-Based Surfaces for Use in Planar Array Biosensors

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 504))

Summary

Several methods are described in which a biological recognition molecule — a critical element in any biosensor — is immobilized onto a silica or silica-based sensing substrate. Although several variations are described, the methods for covalent immobilization share a common theme and are generally composed of three steps: modification of the surface to add specific functional groups (using appropriate silanes or an amine or carboxyl-containing hydrogel), covalent attachment of a crosslinker through one of its reactive moieties, and finally, covalent linking of the biomolecule (recognition element) to the remaining reactive moiety of the crosslinker. One final method is presented in which the surface is modified with a highly hydrophobic silane and a glycolipid recognition element immobilized, essentially irreversibly, by hydrophobic interactions. All of the methods described have been successfully used to immobilize biological recognition molecules onto sensing surfaces, with full functionality in biosensor-binding assays.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bhatia, S. K., Cooney, M. J., Shriver-Lake, L. C., Fare, T. L., and Ligler, F. S. (1991) Immobilization of acetylcholinesterase on solid-surfaces — chemistry and activity studies. Sens. Actuator. B-Chem. 3, 311–317

    Article  Google Scholar 

  2. Duveneck, G. L., Neuschafer, D., and Ehrat, M. (1995) Process for detecting evanescently excited luminescence., Vol. International Patent Go1N 21/77, 21/64

    Google Scholar 

  3. Duveneck, G. L., Pawlak, M., Neuschafer, D., Bar, E., Budach, W., Pieles, U., and Ehrat, M. (1997) Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides. Sens. Actuator. B-Chem. 38/39, 88–95

    Article  Google Scholar 

  4. Liron, Z., Tender, L. M., Golden, J. P., and Ligler, F. S. (2002) Voltage-induced inhibition of antigen-antibody binding at conducting optical waveguides. Biosens. Bioelectron. 17, 489–494

    Article  CAS  PubMed  Google Scholar 

  5. Pawlak, M., Grell, E., Schick, E., Anselmettin, D., and Ehrat, M. (1998) Functional immobilization of biomembrane fragments on planar waveguides for the investigation of site-directed ligand binding by surface confined fluorescence. Faraday Discus. 111, 273–288

    Article  CAS  Google Scholar 

  6. Sapsford, K. E., Rowe Taitt, C. A., and Ligler, F. S. (2002) Planar waveguides for fluorescence biosensors. In: Optical biosensors: Present and future (Ligler, F. S. & Rowe Taitt, C. A., eds.). Elsevier, The Netherlands, pp. 95–122

    Google Scholar 

  7. Bernard, A., Michel, B., and Delamarche, E. (2001) Micromosaic immunoassays. Anal. Chem. 73, 8–12

    Article  CAS  PubMed  Google Scholar 

  8. Delamarche, E., Bernard, A., Michel, B., and Biebuyek, H. (1997) Patterned delivery of immunoglobulins to surfaces using microflu-idic networks. Science 276, 779–781

    Article  CAS  PubMed  Google Scholar 

  9. Gauglitz, G. (2005) Direct optical sensors: principles and selected applications. Anal. Bioanal. Chem. 381, 141–155

    Article  CAS  PubMed  Google Scholar 

  10. Golden, J., Shriver-Lake, L., Sapsford, K., and Ligler, F. (2005) A “Do-it-yourself” array biosensor. Methods 37, 65–72

    Article  CAS  PubMed  Google Scholar 

  11. Ngundi, M. M., Taitt, C. R., McMurry, S. A., Kahne, D., and Ligler, F. S. (2006) Detection of bacterial toxins with mon-osaccharide arrays. Biosens. Bioelectron. 21, 1195–1201

    Article  CAS  PubMed  Google Scholar 

  12. Rowe, C. A., Scruggs, S. B., Feldstein, M. J., Golden, J. P., and Ligler, F. S. (1999) An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem. 71, 433–439

    Article  CAS  PubMed  Google Scholar 

  13. Sapsford, K. E., Rasooly, A., Taitt, C. R., and Ligler, F. S. (2004) Rapid detection of Campylobacter and Shigella species in food samples using an array biosensor. Anal. Chem. 76, 433–440

    Article  CAS  PubMed  Google Scholar 

  14. Sapsford, K. E., Taitt, C. R., Loo, N., and Ligler, F. S. (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl. Environ. Micro-biol. 71, 5590–5592

    Article  CAS  Google Scholar 

  15. Taitt, C. R., Anderson, G. P. , Lingerfelt, B. M., Feldstein, M. J., and Ligler, F. S. (2002) Nine-analyte detection using an array-based biosensor. Anal. Chem. 74, 6114–6120

    Article  CAS  PubMed  Google Scholar 

  16. Tschmelak, J., Kumpf, M., Proll, G., and Gauglitz, G. (2004) Biosensor for seven sul-phonamides in drinking, ground, and surface water with difficult matrices. Anal. Lett. 37, 1701–1718

    Article  CAS  Google Scholar 

  17. Tschmelak, J., Proll, G., and Gauglitz, G. (2004) Verification of performance with the automated direct optical TIRF immunosen-sor (River Analyser) in single and multi-ana-lyte assays with real water samples. Biosens. Bioelectron. 20, 743–752

    Article  CAS  PubMed  Google Scholar 

  18. Moreno-Bondi, M. C., Taitt, C. R., Shriver-Lake, L. C., and Ligler, F. S. (2006) Multiplexed measurement of serum antibodies using an array biosensor. Biosens. Bioelectron. 21, 1880–1886

    Article  CAS  Google Scholar 

  19. Ngundi, M. M., Shriver-Lake, L. C., Moore, M. H., Ligler, F. S., and Taitt, C. R. (2006) Multiplexed detection of mycotoxins in foods with a regenerable array. J. Food Prot. 69, 3047–3051

    CAS  PubMed  Google Scholar 

  20. Martin, B. D., Lindhardt, R. J., and Dordick, J. S. (1998) Highly swelling hydrogels from ordered galactose-based polyacrylates. Bio-materials 19, 69–76

    CAS  Google Scholar 

  21. Cras, J. J., Rowe-Taitt, C. A., Nivens, D. A., and Ligler, F. S. (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron. 14, 683–688

    Article  CAS  Google Scholar 

  22. Shriver-Lake, L. C. (1998) Silane-modified surfaces for biomaterial immobilization. In: Immobilized biomolecules in analysis: A practical approach (Cass, T. & Ligler, F. S., eds.). Oxford University Press, Oxford

    Google Scholar 

  23. Golden, J. P. , Taitt, C. R., Shriver-Lake, L. C., Shubin, Y. S., and Ligler, F. S. (2005) A portable automated multianalyte biosensor. Talanta 65, 1078–1085

    Article  CAS  PubMed  Google Scholar 

  24. Charles, P. T., Goldman, E. R., Rangasammy, J. G., Schauer, C. L., Chen, M.-S., and Taitt, C. R. (2004) Fabrication and characterization of 3D hydrogel microarrays to measure anti-genicity and antibody functionality for biosensor applications. Biosens. Bioelectron. 20, 753–764

    Article  CAS  PubMed  Google Scholar 

  25. Ngundi, M. M., Kulagina, N. V., Anderson, G. P., and Taitt, C. R. (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Exp. Rev. Proteomics 3, 511–524

    Article  CAS  Google Scholar 

  26. Rowe-Taitt, C. A., Cras, J. J., Patterson, C. H., Golden, J. P., and Ligler, F. S. (2000) A ganglioside-based assay for cholera toxin using an array biosensor. Anal. Biochem. 281, 123–133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The development of these methods was in part funded by the Office of Naval Research. The views expressed here are those of the authors and do not represent those of the U.S. Navy, the U.S. Department of Defense or the U.S. Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shriver-Lake, L.C., Charles, P.T., Taitt, C.R. (2009). Immobilization of Biomolecules onto Silica and Silica-Based Surfaces for Use in Planar Array Biosensors. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 504. Humana Press. https://doi.org/10.1007/978-1-60327-569-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-569-9_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-568-2

  • Online ISBN: 978-1-60327-569-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics