Skip to main content

In silico Characterization of DNA Motifs with Particular Reference to Promoters and Terminators

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 502))

Abstract

Knowledge of the regulatory elements contained within bacteriophage genomes forms the basis for understanding genomic expression and organization. The in silico prediction of promoter and terminator sequences in phage genomes is a first step towards this understanding. In this chapter, a number of programs and resources to identify regulatory elements are listed and discussed. Combining the available web-resources and literature data optimizes these predictions and can thus aid in a more directed experimental identification of these regulatory elements.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dunn, J. J. and Studier, F. W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol., 166, 477–535.

    Article  CAS  PubMed  Google Scholar 

  2. Miller, E. S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Ruger, W. (2003). Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev., 67, 86–156.

    Article  CAS  PubMed  Google Scholar 

  3. Pajunen, M.I., Elizondo, M.R., Skurnik, M., Kieleczawa, J., Molineux, I.J. (2002). Complete nucleotide sequence and likely recombinatorial origin of bacteriophage T3. J. Mol. Biol., 319, 1115–1132.

    Article  CAS  PubMed  Google Scholar 

  4. Nechaev, S. and Severinov, K. (2003) Bacteriophage-induced modifications of host RNA polymerase. Annu. Rev. Microbiol., 57, 301–22.

    Article  CAS  PubMed  Google Scholar 

  5. Schneider, T.D. and Stephens, R.M. (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res., 18, 6097–6100.

    Article  CAS  PubMed  Google Scholar 

  6. Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: A sequence logo generator. Genome Res., 14, 1188–1190.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, Z. and Schneider, T.D. (2005) Information theory based T7-like promoter models: classification of bacteriophages and differential evolution of promoters and their polymerases. Nucleic Acids Res., 33, 6172–6187.

    Article  CAS  PubMed  Google Scholar 

  8. Skordalakes, E. and Berger., J. M. (2003) Structure of the rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell, 114, 135–146.

    Article  CAS  PubMed  Google Scholar 

  9. d’Aubenton-Carafa, Y., Brody, Y. and C. Thermes. (1990) Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J. Mol. Biol., 216, 835–858.

    Article  PubMed  Google Scholar 

  10. de Hoon, M. J. L., Makita, Y., Nakai, K. and S. Miyano (2005) Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Comp. Biol., 1, 0212–0221.

    Google Scholar 

  11. Dobbins, A.T., George, M. Jr., Basham, D.A., Ford, M.E., Houtz, J.M., Pedulla, M.L., Lawrence, J.G., Hatfull, G.F. and Hendrix, R.W. (2004) Complete genomic sequence of the Salmonella bacteriophage SP6. J. Bacteriol., 186, 1933–1944.

    Article  CAS  PubMed  Google Scholar 

  12. Ceyssens, P-J., Lavigne, R., Chibeu, A., Mattheus, W., Hertveldt, K., Robben, J. and Volckaert, G (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the \(\phi\mathrm{KMV}\) subgroup within the T7 supergroup. J. Bacteriol., in press.

    Google Scholar 

  13. Lobry, J.R. (1996) A simple vectorial representation of DNA sequences for the detection of replication origins in bacteria. Biochimie 78, 323–326.

    Article  CAS  PubMed  Google Scholar 

  14. Lobry, J.R. (1999) Genomic landscapes. Microbiol. Today 26, 16–164.

    Google Scholar 

  15. Grigoriev, A. (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 26, 2286–2290.

    Article  CAS  PubMed  Google Scholar 

  16. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31, 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  17. Bailey, T.L. and Elkan, C. (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol., 2, 28–36.

    CAS  PubMed  Google Scholar 

  18. Bailey, T.L. and Gribskov, M. (1998) Methods and statistics for combining motif match scores. J. Comput. Biol. 5, 211–221.

    Article  CAS  PubMed  Google Scholar 

  19. Thompson J.D., Higgins D.G. and Gibson T.J.(1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  20. Lavigne, R., Sun, W.D. and Volckaert, G. (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics, 20, 629–635.

    Article  CAS  PubMed  Google Scholar 

  21. Abreu-Goodger, C. and Merino, E. (2005) RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res., 33, W690–W692.

    Article  CAS  PubMed  Google Scholar 

  22. Rice, P., Longden, I. and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet, 16, 276–277.

    Article  CAS  PubMed  Google Scholar 

  23. Ermolaeva, M. D., Khalak, H. G., White, O., Smith, H. O. and Salzberg, S. L. (2000). Prediction of transcription terminators in bacterial genomes. J. Mol. Biol., 301, 27–33.

    Article  CAS  PubMed  Google Scholar 

  24. Delcher, A. L., D. Harmon, S. Kasif, O. White, and S. L. Salzberg. (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res., 27, 4636–4641.

    Article  CAS  PubMed  Google Scholar 

  25. van Helden, J., André, B. and Collado-Vides, J. (1998) Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol., 281, 827–842.

    Article  PubMed  Google Scholar 

  26. Reese, M.G. (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome, Comput Chem., 26, 51–6.

    Article  CAS  PubMed  Google Scholar 

  27. Mesyanzhinov, V.V., Robben, J., Grymonprez, B., Kostyuchenko, V.A., Burkal’tseva, M.V., Sykilinda, N.N., Krylov, V.N. and Volckaert, G. (2002) The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol., 317, 1–19.

    Article  CAS  PubMed  Google Scholar 

  28. Lavigne, R., Burkal’tseva, M.V., Robben, J., Sykilinda, N.N., Kurochkina, L.P., Grymponprez, B., Jonckx B., Krylov, V.N., Mesyanzhinov, V.V. and Volckaert, G. (2003) The genome of bacteriophage \(\phi\)KMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology, 312, 49–59.

    Article  CAS  Google Scholar 

  29. Chen, Q.K., Hertz, G.Z. and Stormo, G.D. (1997) PromFD 1.0: a computer program that predicts eukaryotic pol II promoters using strings and IMD matrices. Comput. Appl. Biosci., 13, 29–35.

    CAS  PubMed  Google Scholar 

  30. Marsan, L. and Sagot, M.F. (2000) Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. J. Comput. Biol., 7, 345–62.

    Article  CAS  PubMed  Google Scholar 

  31. Schneider, T.D. (1996) Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol., 274, 445–455.

    Article  CAS  PubMed  Google Scholar 

  32. Mullan, L. J. and Bleasby, A. J. (2002) Short EMBOSS User Guide. European Molecular Biology Open Software Suite. Brief. Bioinform., 3, 92–94.

    Article  PubMed  Google Scholar 

  33. Unniraman, S., Prakash, R. and Nagaraja., V. (2002) Conserved economics of transcription termination in eubacteria. Nucleic Acids Res., 30, 675–684.

    Article  CAS  PubMed  Google Scholar 

  34. Kropinski, A. M., Kovalyova, I. V., Billington, S. J., Butts, B. D., Patrick, A. N., Guichard, J. A., Hutson, S. M., Sydlaske, A. D., Day, K. R., Falk, D. R. and McConnell, M. R. The genome of \(\upvarepsilon 15\), a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. (manuscript in preparation).

    Google Scholar 

  35. Wang, L., Trawick, J. D., Yamamoto, R. and Zamudio, C. (2004). Genome-wide operon prediction in Staphylococcus aureus. Nucleic Acids Res. 32, 3689–3702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lavigne, R., Villegas, A., Kropinksi, A.M. (2009). In silico Characterization of DNA Motifs with Particular Reference to Promoters and Terminators. In: Clokie, M.R., Kropinski, A.M. (eds) Bacteriophages. Methods in Molecular Biology™, vol 502. Humana Press. https://doi.org/10.1007/978-1-60327-565-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-565-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-564-4

  • Online ISBN: 978-1-60327-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics