Skip to main content

Applications of Ultra-high-Throughput Sequencing

  • Protocol
  • First Online:
Book cover Plant Systems Biology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 553))

Abstract

The genomics era has enabled scientists to more readily pose truly global questions regarding mutation, evolution, gene and genome structure, function, and regulation. Just as Sanger sequencing ushered in a paradigm shift that enabled the molecular basis of biological questions to be directly addressed, to an even greater degree, ultra-high-throughput DNA sequencing is poised to dramatically change the nature of biological research. New sequencing technologies have opened the door for novel questions to be addressed at the level of the entire genome in the areas of comparative genomics, systems biology, metagenomics, and genome biology. These new sequencing technologies provide a tremendous amount of DNA sequence data to be collected at an astounding pace, with reduced costs, effort, and time as compared to Sanger sequencing. Applications of ultra-high-throughput sequencing (UHTS) are essentially limited only by the imaginations of researchers, and include genome sequencing/resequencing, small RNA discovery, deep SNP discovery, chromatin immunoprecipitation (ChIP) and RNA immunoprecipitation (RIP) coupled with sequence identification, transcriptome analysis including empirical annotation, discovery and characterization of alternative splicing, and gene expression profiling. This technology will have a profound impact on plant breeding, biotechnology, and our fundamental understanding of plant evolution, development, and environmental responses. In this chapter, we provide an overview of UHTS approaches and their applications. We also describe a protocol we have developed for deep sequencing of plant transcriptomes using the Illumina/Solexa sequencing platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster, S.C. (2008) Next-generation sequencing transforms today's biology. Nat. Methods 5, 16–18.

    Article  PubMed  CAS  Google Scholar 

  2. Wold, B. and Myers, R.M. (2008) Sequence census methods for functional genomics. Nat. Methods 5, 19–21.

    Article  PubMed  CAS  Google Scholar 

  3. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M., and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89.

    Article  PubMed  CAS  Google Scholar 

  4. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  CAS  Google Scholar 

  5. Metzker, M.L. (2005) Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776.

    Article  PubMed  CAS  Google Scholar 

  6. Chaisson, M.J. (2008) Short read fragment assembly of bacterial genomes. Genome Res. 18, 324–330.

    Article  PubMed  CAS  Google Scholar 

  7. Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007) SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res. 17, 1697–1706.

    Article  PubMed  CAS  Google Scholar 

  8. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    Article  PubMed  Google Scholar 

  9. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  10. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., et al. (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326.

    Article  PubMed  Google Scholar 

  11. Goldberg, S.M., Johnson, J., Busam, D., Feldblyum, T., Ferriera, S., Friedman, R., Halpern, A., Khouri, H., Kravitz, S.A., Lauro, F.M., et al. (2006) A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. U S A 103, 11240–11245.

    Article  PubMed  CAS  Google Scholar 

  12. Swaminathan, K., Varala, K., and Hudson, M.E. (2007) Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics 8, 132.

    Article  PubMed  Google Scholar 

  13. Macas, J., Neumann, P., and Navratilova, A. (2007) Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula. BMC Genomics 8, 427.

    Article  PubMed  Google Scholar 

  14. Wicker, T., Schlagenhauf, E., Graner, A., Close, T.J., Keller, B., and Stein, N. (2006) 454 sequencing put to the test using the complex genome of barley. BMC Genomics 7, 275.

    Article  PubMed  Google Scholar 

  15. Moore, M.J., Dhingra, A., Soltis, P.S., Shaw, R., Farmerie, W.G., Folta, K.M., and Soltis, D.E. (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol. 6, 17.

    Article  PubMed  Google Scholar 

  16. Barbazuk, W.B., Emrich, S.J., Chen, H.D., Li, L., and Schnable, P.S. (2007) SNP discovery via 454 transcriptome sequencing. Plant J. 51, 910–918.

    Article  PubMed  CAS  Google Scholar 

  17. Thomas, R.K., Nickerson, E., Simons, J.F., Jänne, P.A., Tengs, T., Yuza, Y., Garraway, L.A., LaFramboise, T., Lee, J.C., Shah, K., et al. (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat. Med. 12, 852–855.

    Article  PubMed  CAS  Google Scholar 

  18. van Orsouw, N.J., Hogers, R.C., Janssen, A., Yalcin, F., Snoeijers, S., Verstege, E., Schneiders, H., van der Poel, H., van Oeveren, J., Verstegen, H., et al. (2007) Complexity reduction of polymorphic sequences (CRoPStrade mark): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2, e1172.

    Article  PubMed  Google Scholar 

  19. Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995) Serial analysis of gene expression. Science 270, 484–487.

    Article  PubMed  CAS  Google Scholar 

  20. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 18, 630–634.

    Article  PubMed  CAS  Google Scholar 

  21. Ge, X., Wu, Q., and Wang, S.M. (2006) SAGE detects microRNA precursors. BMC Genomics 7, 285.

    Article  PubMed  Google Scholar 

  22. Lu, C., Tej, S.S., Luo, S., Haudenschild, C.D., Meyers, B.C., and Green, P.J. (2005) Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569.

    Article  PubMed  CAS  Google Scholar 

  23. Lu, C., Kulkarni, K., Souret, F.F., MuthuValliappan, R., Tej, S.S., Poethig, R.S., Henderson, I.R., Jacobsen, S.E., Wang, W., Green, P.J., et al. (2006) MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res. 16, 1276–1288.

    Article  PubMed  CAS  Google Scholar 

  24. Fahlgren, N., Howell, M.D., Kasschau, K.D., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., Law, T.F., Grant, S.R., Dangl, J.L., et al. (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2, e219.

    Article  PubMed  Google Scholar 

  25. Kasschau, K.D., Fahlgren, N., Chapman, E.J., Sullivan, C.M., Cumbie, J.S., Givan, S.A., and Carrington, J.C. (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol. 5, e57.

    Article  PubMed  Google Scholar 

  26. Henderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J., and Jacobsen, S.E. (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721–725.

    Article  PubMed  CAS  Google Scholar 

  27. Rajagopalan, R., Vaucheret, H., Trejo, J., and Bartel, D.P. (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425.

    Article  PubMed  CAS  Google Scholar 

  28. Barakat, A., Wall, K., Diloretto, S., dePamphilis, C., and Carlson, C. (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8, 481.

    Article  PubMed  Google Scholar 

  29. Barakat, A., Wall, K., Leebens-Mack, J., Wang, Y.J., Carlson, J.E., and Depamphilis, C.W. (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J. 51, 991–1003.

    Article  PubMed  CAS  Google Scholar 

  30. Yao, Y. and Ni, Z. (2007) Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol. 8, R96.

    Article  PubMed  Google Scholar 

  31. Mockler, T.C., Chan, S., Sundaresan, A., Chen, H., Jacobsen, S.E., and Ecker, J.R. (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85, 1–15.

    Article  PubMed  CAS  Google Scholar 

  32. Mardis, E.R. (2007) ChIP-seq: welcome to the new frontier. Nat. Methods 4, 613–614.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007) Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  34. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657.

    Article  PubMed  CAS  Google Scholar 

  35. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., et al. (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.

    Article  PubMed  CAS  Google Scholar 

  36. Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., and Pugh, B.F. (2007) Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446, 572–576.

    Article  PubMed  CAS  Google Scholar 

  37. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor, K.H., Kramer, R.S., Davis, J.W., Guo, J., Duff, D.J., Xu, D., Caldwell, C.W., and Shi, H. (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res. 67, 8511–8518.

    Article  PubMed  CAS  Google Scholar 

  39. Angly, F.E., Felts, B., Breitbart, M., Salamon, P., Edwards, R.A., Carlson, C., Chan, A.M., Haynes, M., Kelley, S., Liu, H., et al. (2006) The marine viromes of four oceanic regions. PLoS Biol. 4, e368.

    Article  PubMed  Google Scholar 

  40. Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Quan, P.L., Briese, T., Hornig, M., Geiser, D.M., et al. (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287.

    Article  PubMed  CAS  Google Scholar 

  41. Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U S A 103, 12115–12120.

    Google Scholar 

  42. Gilbert, M.T., Binladen, J., Miller, W., Wiuf, C., Willerslev, E., Poinar, H., Carlson, J.E., Leebens-Mack, J.H., and Schuster, S.C. (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res. 35, 1–10.

    Article  PubMed  CAS  Google Scholar 

  43. Poinar, H.N., Schwarz, C., Qi, J., Shapiro, B., Macphee, R.D., Buigues, B., Tikhonov, A., Huson, D.H., Tomsho, L.P., Auch, A., et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392–394.

    Article  PubMed  CAS  Google Scholar 

  44. Green, R.E., Krause, J., Ptak, S.E., Briggs, A.W., Ronan, M.T., Simons, J.F., Du, L., Egholm, M., Rothberg, J.M., Paunovic, M., et al. (2006) Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336.

    Article  PubMed  CAS  Google Scholar 

  45. Noonan, J.P., Coop, G., Kudaravalli, S., Smith, D., Krause, J., Alessi, J., Chen, F., Platt, D., Pääbo, S., Pritchard, J.K., et al. (2006) Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118.

    Article  PubMed  CAS  Google Scholar 

  46. Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J., et al. (2007) Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39, 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  47. Porreca, G.J., Zhang, K., Li, J.B., Xie, B., Austin, D., Vassallo, S.L., LeProust, E.M., Peck, B.J., Emig, C.J., Dahl, F., et al. (2007) Multiplex amplification of large sets of human exons. Nat. Methods 4, 931–936.

    Article  PubMed  CAS  Google Scholar 

  48. Hene, L., Sreenu, V.B., Vuong, M.T., Abidi, S.H., Sutton, J.K., Rowland-Jones, S.L., Davis, S.J., and Evans, E.J. (2007) Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS. BMC Genomics 8, 333.

    Article  PubMed  Google Scholar 

  49. Emrich, S.J., Barbazuk, W.B., Li, L., and Schnable, P.S. (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 17, 69–73.

    Article  PubMed  CAS  Google Scholar 

  50. Eveland, A.L., McCarty, D.R., and Koch, K.E. (2007) Transcript profiling by 3′UTR sequencing resolves expression of gene families. Plant Physiol. 146, 32–44.

    Article  PubMed  Google Scholar 

  51. Gowda, M., Li, H., Alessi, J., Chen, F., Pratt, R., and Wang, G.L. (2006) Robust analysis of 5′-transcript ends (5′-RATE): a novel technique for transcriptome analysis and genome annotation. Nucleic Acids Res. 34, e126.

    Article  PubMed  Google Scholar 

  52. Kim, J.B., Porreca, G.J., Song, L., Greenway, S.C., Gorham, J.M., Church, G.M., Seidman, C.E., and Seidman, J.G. (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science 316, 1481–1484.

    Article  PubMed  CAS  Google Scholar 

  53. Shendure, J., Porreca, G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D., and Church, G.M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732.

    Article  PubMed  CAS  Google Scholar 

  54. Bainbridge, M.N., Warren, R.L., Hirst, M., Romanuik, T., Zeng, T., Go, A., Delaney, A., Griffith, M., Hickenbotham, M., Magrini, V., et al. (2006) Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246.

    Article  PubMed  Google Scholar 

  55. Torres, T.T., Metta, M., Ottenwälder, B., and Schlötterer, C. (2008) Gene expression profiling by massively parallel sequencing. Genome Res. 18, 172–177.

    Article  PubMed  CAS  Google Scholar 

  56. Toth, A.L., Varala, K., Newman, T.C., Miguez, F.E., Hutchison, S.K., Willoughby, D.A., Simons, J.F., Egholm, M., Hunt, J.H., Hudson, M.E., et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441–444.

    Article  PubMed  CAS  Google Scholar 

  57. Weber, A.P., Weber, K.L., Carr, K., Wilkerson, C., and Ohlrogge, J.B. (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol. 144, 32–42.

    Article  PubMed  CAS  Google Scholar 

  58. Cheung, F., Haas, B.J., Goldberg, S.M., May, G.D., Xiao, Y., and Town, C.D. (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7, 272.

    Article  PubMed  Google Scholar 

  59. Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J.D., Hazen, S.P., Priest, H.D., Sullivan, C.M., Shen, R., et al. (2007) Network discovery pipeline elucidates conserved time of day specific cis-regulatory modules. PLoS Genetics 2(8), e 795.

    Google Scholar 

  60. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  61. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz, S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al. (2000) A whole-genome assembly of Drosophila. Science 287, 2196–2204.

    Article  PubMed  CAS  Google Scholar 

  62. Sutton, G., White, O., Adams, M., and Kerlavage, A. (1995) TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci. Technol. 1, 9–19.

    Article  CAS  Google Scholar 

  63. Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P., Zody, M.C., and Lander, E.S. (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13, 91–96.

    Article  PubMed  CAS  Google Scholar 

  64. Kent, W.J. (2002) BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664.

    PubMed  CAS  Google Scholar 

  65. Warren, R.L., Sutton, G.G., Jones, S.J., and Holt, R.A. (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23, 500–501.

    Article  PubMed  CAS  Google Scholar 

  66. Jeck, W.R., Reinhardt, J.A., Baltrus, D.A., Hickenbotham, M.T., Magrini, V., Mardis, E.R., Dangl, J.L., and Jones, C.D. (2007) Extending assembly of short DNA sequences to handle error. Bioinformatics 23, 2942–2944.

    Article  PubMed  CAS  Google Scholar 

  67. Schatz, M.C. and Trapnell, C. (2007) High-throughput sequence alignment using Graphics Processing Units. BMC Bioinformatics 8, 474.

    Article  PubMed  Google Scholar 

  68. Zhu, Y., Machleder, E., Chenchik, A., and Siebert, P. (2001) Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897.

    PubMed  CAS  Google Scholar 

  69. Zhulidov, P.A., Bogdanova, E.A., Shcheglov, A.S., Vagner, L.L., Khaspekov, G.L., Kozhemyako, V.B., Matz, M.V., Meleshkevitch, E., Moroz, L.L., Lukyanov, S.A., et al. (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res. 32, e37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Rongkun Shen, Henry Priest, Scott Givan, Chris Sullivan, and Doug Bryant for their contributions to our studies involving Illumina-based transcriptome sequencing. We would also like to thank Alice Barkan, Todd Castoe, Todd Michael, and Laurence von Kalm for their helpful comments on this chapter. This work was supported by Oregon State University and by grant ARF4435 from the Oregon Agricultural Research Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fox, S., Filichkin, S., Mockler, T.C. (2009). Applications of Ultra-high-Throughput Sequencing. In: Belostotsky, D. (eds) Plant Systems Biology. Methods in Molecular Biology™, vol 553. Humana Press. https://doi.org/10.1007/978-1-60327-563-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-563-7_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-562-0

  • Online ISBN: 978-1-60327-563-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics