Skip to main content

Deciphering the Code of Innate Immunity Recognition of siRNAs

  • Protocol
  • First Online:
siRNA and miRNA Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 487))

Abstract

Small interfering RNAs (siRNAs) have been widely used for knocking down gene expression in a variety of organisms. Although experiments in cancer cell lines indicate that siRNAs are usually not detected by innate immunity, lipid-mediated delivery of siRNAs into blood cells is often accompanied by the activation of immunity. Recent studies indicated that certain siRNA sequences engage Toll-like receptor TLR7/8 signalling resulting in the activation of a large number of host defense genes including interferons (IFNs), proinflammatory cytokines, Mx proteins, chemokines, chemokine receptors, costimulatory molecules, RNA helicases, galectins, and ubiqitin ligases. In addition to immune activation, most siRNA sequences, if not all, can silence multiple genes in addition to the intended target gene, a phenomenon known as “off-target effects.” Hence, one of the major challenges for therapeutic applications of siRNAs is to decipher the mechanisms involved in siRNA recognition by the immune system and to identify strategies that can evade immune activation. In this respect, the replacement of only uridines with their 2′-modified counterparts such as 2′-O-methyl uridines abrogate immune recognition of siRNAs. Interestingly, 2′-O-methyl-modified RNAs not only evade TLR7/8-sensing pathways, but also reduce siRNA off-target effects and antagonize with a variety of immunostimulatory RNAs to activate TLR7/8 signalling. RNA oligonucleotides and duplex siRNAs with 2’-deoxy uridines or thymidines exhibited no significant immunostimulatory effects and binding potency to TLRs. Therefore, I recommend the use of these modifications in order to evade immune sensing of siRNA and off-target effects. This chapter addresses the current state of knowledge regarding the molecular and cellular mechanisms of RNA recognition by the immune system and proposes a range of strategies allowing the design of siRNAs with minimal or maximal immunostimulatory potency for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen, R. (1990) Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol, 8, 340–344.

    Article  PubMed  CAS  Google Scholar 

  2. Fire, A., Xu, S., Montgomery, M. K., et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  3. Svoboda, P., Stein, P., Hayashi, H., et al. (2000) Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development, 127, 4147–4156.

    PubMed  CAS  Google Scholar 

  4. Sen, G. C. (2001) Viruses and interferons. Annu Rev Microbiol, 55, 255–281.

    Article  PubMed  CAS  Google Scholar 

  5. Zamore, P. D., Tuschl, T., Sharp, P. A., et al. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev, 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  7. Elbashir, S. M., Harborth, J., Lendeckel, W., et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498

    Article  PubMed  CAS  Google Scholar 

  8. Sioud, M. (2004) Therapeutic siRNAs. Trends Pharmacol Sci, 25, 22–28.

    Article  PubMed  CAS  Google Scholar 

  9. Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378

    Article  PubMed  CAS  Google Scholar 

  10. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  11. Song, J. J., Smith, S. K., Hannon, G. J., et al. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305, 1434–147.

    Article  PubMed  CAS  Google Scholar 

  12. Matranga, C., Tomari, Y., Shin, C., et al. (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123, 607–620.

    Article  PubMed  CAS  Google Scholar 

  13. Rand, T. A., Petersen, S., Du, F., et al. (2005) Wang: Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 123, 621–629.

    Article  PubMed  CAS  Google Scholar 

  14. Ma, J. B., Yuan, Y. R., Meister, G., et al. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus. Piwi protein Nature, 434, 666–670.

    Article  PubMed  CAS  Google Scholar 

  15. Sioud, M. and Sorensen, D. R. (2003) Cationic liposome-mediated delivery of siRNAs in adult mice. Biochem Biophys Res Commun, 312, 1220–1225.

    Article  PubMed  CAS  Google Scholar 

  16. Jackson, A. L., Bartz, S. R., Schelter, J., et al. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  17. Semizarov, D., Frost, L., Sarthy, A., et al. (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A, 100, 6347–6352.

    Article  PubMed  CAS  Google Scholar 

  18. Sledz, C. A., Holko, M., de Veer, M. J., et al. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol, 5, 834–839.

    Article  PubMed  CAS  Google Scholar 

  19. Parkin, J. and Cohen, B. (2001) An overview of the immune system. Lancet, 357, 1777–1789.

    Article  PubMed  CAS  Google Scholar 

  20. Janeway, C. A. and Medzhitov, R. Jr. (2002) Innate immune recognition. Annu Rev Immunol, 20, 197–216.

    Article  PubMed  CAS  Google Scholar 

  21. Takeda, K. and Akira, S. (2005) Toll-like receptors in innate immunity. Int Immunol, 17, 1–14.

    Article  PubMed  CAS  Google Scholar 

  22. Sioud, M. (2006) Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med, 12, 167–716.

    Article  PubMed  CAS  Google Scholar 

  23. Brennan, C. A. and Anderson, K. V. (2004) Drosophila: The genetics of innate immune recognition and response. Annu Rev Immunol, 22, 457–483.

    Article  PubMed  CAS  Google Scholar 

  24. Lemaitre, B., Nicolas, E., Michaut, L., et al. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86, 973–983.

    Article  PubMed  CAS  Google Scholar 

  25. Akira, S. and Takeda, K. (2004) Toll-like receptor signaling. Nat Rev Immunol, 4, 499–511.

    Article  PubMed  CAS  Google Scholar 

  26. Li, S., Peters, G. A., Ding, K., et al. (2006) Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci U S A, 103, 10005–10010.

    Article  PubMed  CAS  Google Scholar 

  27. Samuel, C. E. (2001) Antiviral actions of interferons. Clin Microbiol Rev, 14, 778–809.

    Article  PubMed  CAS  Google Scholar 

  28. Kato, H., Takeuchi, O., Sato, S., et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 441, 101–105.

    Article  PubMed  CAS  Google Scholar 

  29. Meylan, E., Tschopp, J., and Karin, M. (2006) Intracellular pattern recognition receptors in the host response. Nature, 442, 39–44.

    Article  PubMed  CAS  Google Scholar 

  30. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732–438.

    Article  PubMed  CAS  Google Scholar 

  31. Heil, F., Hemmi, H., Hochrein, H., et al. (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303, 1526–1529.

    Article  PubMed  CAS  Google Scholar 

  32. Krieg, A. M. (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 20, 709–760

    Article  PubMed  CAS  Google Scholar 

  33. Brentano, F., Kyburz, D., Schorr, O., et al. (2005) The role of Toll-like receptor signaling in the pathogenesis of arthritis. Cell Immunol, 233, 90–96.

    Article  PubMed  CAS  Google Scholar 

  34. Cao, W. and Liu, Y. J. (2007) Innate immune functions of plasmacytoid dendritic cells. Curr Opin Immunol, 19, 24–30.

    Article  PubMed  Google Scholar 

  35. Sioud, M. (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol, 348, 1079–1090

    Article  PubMed  CAS  Google Scholar 

  36. Hornung, V., Guenthner-Biller, M., Bourquin, C., et al. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med, 11, 263–270.

    Article  PubMed  CAS  Google Scholar 

  37. Judge, A. D., Sood, V., Shaw, J. R., et al. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol, 23, 457–462.

    Article  PubMed  CAS  Google Scholar 

  38. Sioud, M. (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol, 36, 1222–1230.

    Article  PubMed  CAS  Google Scholar 

  39. Kariko, K., Bhuyan, P., Capodici, J., et al. (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol, 172, 6545–6549.

    PubMed  CAS  Google Scholar 

  40. Cekaite, L., Furset, G., Hovig, E., et al. (2007) Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol, 365, 90–108.

    Article  PubMed  CAS  Google Scholar 

  41. Morrissey, D. V., Lockridge, J. A., Shaw, L., et al. (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol, 23, 1002–1007.

    Article  PubMed  CAS  Google Scholar 

  42. Judge, A. D., Bola, G., Lee, A. C., et al. (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther, 13, 494–505.

    Article  PubMed  CAS  Google Scholar 

  43. Kariko, K., Buckstein, M., Ni, H., et al. (2005) Suppression of RNA recognition by Toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 23, 165–175.

    Article  PubMed  CAS  Google Scholar 

  44. Sioud, M. (2007) RNA interference and innate immunity. Adv Drug Deliv Rev, 59, 153–163.

    Article  PubMed  CAS  Google Scholar 

  45. Sioud, M., Furset, G., and Cekaite, L. (2007) Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem Biophys Res Commun, 361, 122–126.

    Article  PubMed  CAS  Google Scholar 

  46. . Furset, G., Floisand, Y., and Sioud, M. (2008) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology,123, 263-71.

    Google Scholar 

  47. Robbins, M., Judge, A., Liang, L., et al. (2007) 2′-O. -methyl-modified RNAs act as TLR7 antagonists Mol Ther, 15, 1663–1669.

    Article  PubMed  CAS  Google Scholar 

  48. Marques, J. T., Devosse, T., Wang, D., et al. (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol, 24, 559–565.

    Article  PubMed  CAS  Google Scholar 

  49. Robbins, M. A., Li, M., Leung, I., et al. (2006) Stable expression of shRNAs in human CD34 + progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat Biotechnol, 24, 566–571.

    Article  PubMed  CAS  Google Scholar 

  50. Sioud, M. (2006) RNA interference below the immune radar. Nat Biotechnol, 24, 521–522

    Article  PubMed  CAS  Google Scholar 

  51. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  52. Han, J., Lee, Y., Yeom, K. H., et al. (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125, 887–901.

    Article  PubMed  CAS  Google Scholar 

  53. Furset, G. and Sioud, M. (2007) Design of bifunctional siRNAs combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem Biophys Res Commun, 352, 642–649.

    Article  PubMed  CAS  Google Scholar 

  54. Hornung, V., Ellegast, J., Kim, S., et al. (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science, 314, 994–997.

    Article  PubMed  Google Scholar 

  55. Jackson, A. L., Burchard, J., Leake, D., et al. (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA, 12, 1197–205.

    Article  PubMed  CAS  Google Scholar 

  56. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature, 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  57. Rossi, M. and Young, J. W. (2005) Human dendritic cells: Potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol, 175, 1373–1381.

    PubMed  CAS  Google Scholar 

  58. Pardoll, D. (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol, 21, 807–839.

    Article  PubMed  CAS  Google Scholar 

  59. Grutz, G. (2005) New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol, 77, 3–15.

    PubMed  Google Scholar 

  60. Alexander, W. S. and Hilton, D. J. (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol, 22, 503–529.

    Article  PubMed  CAS  Google Scholar 

  61. Shen, L., Evel-Kabler, K., Strube, R., et al. (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol, 22, 1546–1553.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sioud , M. (2009). Deciphering the Code of Innate Immunity Recognition of siRNAs. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics