Skip to main content

Induced Nitric Oxide Synthase as a Major Player in the Oncogenic Transformation of Inflamed Tissue

  • Protocol
Inflammation and Cancer

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 512))

Summary

Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, C.Q. and Wogan, G.N. (2005) Nitric oxide as a modulator of apoptosis. Cancer Lett 226, 1–15.

    Article  CAS  PubMed  Google Scholar 

  2. Stamler, J.S. (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78, 931–936.

    Article  CAS  PubMed  Google Scholar 

  3. Butler, A.R., Flitney, F.W., and Williams, D.L. (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective. Trends Pharmacol Sci 16, 18–22.

    Article  CAS  PubMed  Google Scholar 

  4. Wink, D.A., Hanbauer, I., Grisham, M.B., Laval, F., Nims, R.W., Laval, J., Cook, J., Pacelli, R, Liebmann, J., Krishna, M., Ford, P.C., and Mitchell, J.B. (1996) Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr Top Cell Regul 34, 159–187.

    Article  CAS  PubMed  Google Scholar 

  5. Nathan, C. (2004) The moving frontier in nitric oxide-dependent signaling. Sci STKE 2004, pe52.

    Google Scholar 

  6. Goyal, R.K. and He, X.D. (1998) Evidence for NO• redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut. Am J Physiol 275, G1185–G1192.

    CAS  PubMed  Google Scholar 

  7. Moncada, S., Palmer, R.M., and Higgs, E.A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109–142.

    CAS  PubMed  Google Scholar 

  8. Lincoln, J., Hoyle, H., and Burnstock, G. (1997) Nitric Oxide in Health and Disease, Cambridge University Press, Cambridge

    Google Scholar 

  9. Stuehr, D.J. and Marletta, M.A. (1985) Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopoly-saccharide. Proc Natl Acad Sci U S A 82,7738–7742.

    Article  CAS  PubMed  Google Scholar 

  10. Stuehr, D.J. and Marletta, MA. (1987) Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lym-phokines, or interferon–gamma. J Immunol 139, 518–525.

    CAS  PubMed  Google Scholar 

  11. Thomassen, M.J. and Kavuru, M.S. (2001) Human alveolar macrophages and monocytes as a source and target for nitric oxide. Int Immunopharmacol 1, 1479–1490.

    Article  CAS  PubMed  Google Scholar 

  12. van der Veen, RC. (2001) Nitric oxide and T helper cell immunity. Int Immunopharmacol 1, 1491–1500.

    Article  PubMed  Google Scholar 

  13. Cifone, M.G., Ulisse, S., and Santoni, A. (2001) Natural killer cells and nitric oxide. Int Immunopharmacol 1, 1513–1524.

    Article  CAS  PubMed  Google Scholar 

  14. Iijima, H., Duguet, A., Eum, S.Y., Hamid, Q., and Eidelman, D.H. (2001) Nitric oxide and protein nitration are eosinophil dependent in allergen-challenged mice. Am J Respir Crit Care Med 163, 1233–1240.

    CAS  PubMed  Google Scholar 

  15. Bidri, M., Feger, F., Varadaradjalou, S., Ben Hamouda, N., Guillosson, J.J., and Arock, M. (2001) Mast cells as a source and target for nitric oxide. Int Immunopharmacol 1, 1543–1558.

    Article  CAS  PubMed  Google Scholar 

  16. Forsythe, P., Gilchrist, M., Kulka, M., and Befus, A.D. (2001) Mast cells and nitric oxide: control of production, mechanisms of response. Int Immunopharmacol 1, 1525–1541.

    Article  CAS  PubMed  Google Scholar 

  17. Bogdan, C., Rollinghoff, M., and Diefen-bach, A. (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol 12, 64–76.

    Article  CAS  PubMed  Google Scholar 

  18. Langrehr, J.M., Hoffman, R.A., Lancaster, J.R., Jr., and Simmons, R.L. (1993) Nitric oxide – a new endogenous immunomodula-tor. Transplantation 55, 1205–1212.

    Article  CAS  PubMed  Google Scholar 

  19. Barnes, P.J. and Liew, F.Y. (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16, 128–130.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor-Robinson, A.W., Liew, F.Y., Severn, A., Xu, D., McSorley, S.J., Garside, P., Padron, J., and Phillips, R.S. (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur J Immunol 24, 980–984.

    Article  CAS  PubMed  Google Scholar 

  21. Thuring, H., Stenger, S., Gmehling, D., Rollinghoff, M., and Bogdan, C. (1995) Lack of inducible nitric oxide synthase activity in T cell clones and T lymphocytes from naive and Leishmania major–infected mice. Eur J Immunol 25, 3229–3234.

    Article  CAS  PubMed  Google Scholar 

  22. Wei, X.Q., Charles, I.G., Smith, A., Ure, J., Feng, G.J., Huang, F.P., Xu, D., Muller, W., Moncada, S., and Liew, F.Y. (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411.

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong, R. (2001) The physiological role and pharmacological potential of nitric oxide in neutrophil activation. Int Immu-nopharmacol 1, 1501–1512.

    CAS  Google Scholar 

  24. Bentz, B.G., Simmons, R.L., Haines, G.K., III, and Radosevich, J.A. (2000) The yin and yang of nitric oxide: reflections on the physiology and pathophysiology of NO. Head Neck 22, 71–83.

    Article  CAS  PubMed  Google Scholar 

  25. Stark, M.E. and Szurszewski, J.H. (1992) Role of nitric oxide in gastrointestinal and hepatic function and disease. Gastroenterology 103, 1928–1949.

    CAS  PubMed  Google Scholar 

  26. Coleman, J.W. (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1, 1397–1406.

    Article  CAS  PubMed  Google Scholar 

  27. Fang, F.C. (1997) Perspectives series: host/ pathogen interactions. Mechanisms of nitric oxide–related antimicrobial activity. J Clin Invest 99, 2818–2825.

    Article  CAS  PubMed  Google Scholar 

  28. Alam, M.S., Akaike, T., Okamoto, S., Kubota, T., Yoshitake, J., Sawa, T., Miyamoto, Y., Tamura, F., and Maeda, H. (2002) Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun 70, 3130–3142.

    Article  CAS  PubMed  Google Scholar 

  29. Granger, D.L., Hibbs, J.B., Jr., Perfect, J.R., and Durack, D.T. (1988) Specific amino acid (L–arginine) requirement for the micro-biostatic activity of murine macrophages. J Clin Invest 81, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  30. James, S.L. (1995) Role of nitric oxide in parasitic infections. Microbiol Rev 59, 533–547.

    CAS  PubMed  Google Scholar 

  31. Mannick, J.B., Asano, K., Izumi, K., Kieff, E., and Stamler, J.S. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79, 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  32. Nathan, C. and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci U S A 97, 8841–8848.

    Article  CAS  PubMed  Google Scholar 

  33. Wink, D.A., Hanbauer, I., Krishna, M.C., DeGraff, W., Gamson, J., and Mitchell, J.B. (1993) Nitric oxide protects against cellular damage and cytotoxiCity from reactive oxygen species. Proc Natl Acad Sci U S A 90, 9813–9817.

    Article  CAS  PubMed  Google Scholar 

  34. Berendji-Grun, D., Kolb-Bachofen, V., and Kroncke, K.D. (2001) Nitric oxide inhibits endothelial IL-1[beta]-induced ICAM-1 gene expression at the transcriptional level decreasing Sp1 and AP-1 activity. Mol Med 7, 748–754.

    CAS  PubMed  Google Scholar 

  35. Clancy, R., Varenika, B., Huang, W., Ballou, L., Attur, M., Amin, A.R., and Abramson, S.B. (2000) Nitric oxide synthase/COX cross-talk: nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production. J Immunol 165, 1582–1587.

    CAS  PubMed  Google Scholar 

  36. De Caterina, R., Libby, P., Peng, H.B., Thannickal, V.J., Rajavashisth, T.B., Gim-brone, M.A., Jr., Shin, W.S., and Liao, J.K. (1995) Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 96, 60–68.

    Article  PubMed  Google Scholar 

  37. Gurjar, M.V., DeLeon, J., Sharma, R.V., and Bhalla, R.C. (2001) Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J Appl Physiol 91, 1380–1386.

    CAS  PubMed  Google Scholar 

  38. Peng, H.B., Rajavashisth, T.B., Libby, P., and Liao, J.K. (1995) Nitric oxide inhibits macrophage-colony stimulating factor gene transcription in vascular endothelial cells. J Biol Chem 270, 17050–17055.

    Article  CAS  PubMed  Google Scholar 

  39. Stadler, J., Harbrecht, B.G., Di Silvio, M., Curran, R.D., Jordan, M.L., Simmons, R.L., and Billiar, T.R. (1993) Endogenous nitric oxide inhibits the synthesis of cycloox-ygenase products and interleukin-6 by rat Kupffer cells. J Leukoc Biol 53, 165–172.

    CAS  PubMed  Google Scholar 

  40. Friebe, A. and Koesling, D. (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93, 96–105.

    Article  CAS  PubMed  Google Scholar 

  41. Nathan, C. and Xie, Q.W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915–918.

    Article  CAS  PubMed  Google Scholar 

  42. Forstermann, U., Pollock, J.S., Tracey, W.R., and Nakane, M. (1994) Isoforms of nitric-oxide synthase: purification and regulation. Methods Enzymol 233, 258–264.

    Article  CAS  PubMed  Google Scholar 

  43. Geller, D.A. and Billiar, T.R. (1998) Molecular biology of nitric oxide synthases. Cancer Metastasis Rev 17, 7–23.

    Article  CAS  PubMed  Google Scholar 

  44. Laubach, V.E., Shesely, E.G., Smithies, O., and Sherman, P.A. (1995) Mice lacking induc-ible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci U S A 92, 10688–10692.

    Article  CAS  PubMed  Google Scholar 

  45. MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trum-bauer, M., Stevens, K., Xie, Q.W., Sokol, K., Hutchinson, N., et al. (1995) Altered responses to bacterial infection and endo-toxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650.

    Article  CAS  PubMed  Google Scholar 

  46. Gregg, A.R., Schauer, A., Shi, O., Liu, Z., Lee, C.G., and O'Brien, W.E. (1998) Limb reduction defects in endothelial nitric oxide synthase-deficient mice. Am J Physiol 275, H2319–H2324.

    CAS  PubMed  Google Scholar 

  47. Huang, P.L., Huang, Z., Mashimo, H., Bloch, K.D., Moskowitz, M.A., Bevan, J.A., and Fishman, M.C. (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242.

    Article  CAS  PubMed  Google Scholar 

  48. Huang, P.L., Dawson, T.M., Bredt, D.S., Snyder, S.H., and Fishman, M.C. (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75, 1273–1286.

    Article  CAS  PubMed  Google Scholar 

  49. Nathan, C.F. and Hibbs, J.B., Jr. (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3, 65–70.

    Article  CAS  PubMed  Google Scholar 

  50. Hofseth, L.J., Hussain, S.P., Wogan, G.N., Harris, C.C. (2003) Nitric oxide in cancer and chemoprevention. Free Radic Biol Med 34, 955–968.

    Article  CAS  PubMed  Google Scholar 

  51. Hussain, S.P., Amstad, P., Raja, K., Ambs, S., Nagashima, M., Bennett, W.P., Shields, P.G., Ham, A.J., Swenberg, J.A., Marrogi, A.J., and Harris, C.C. (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60, 3333–3337.

    CAS  PubMed  Google Scholar 

  52. Jaiswal, M., LaRusso, N.F., Burgart, L.J., and Gores, G.J. (2000) Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60, 184–190.

    CAS  PubMed  Google Scholar 

  53. Lirk, P., Hoffmann, G., and Rieder, J. (2002) Inducible nitric oxide synthase – time for reappraisal. Curr Drug Targets Inflamm Allergy 1, 89–108.

    Article  CAS  PubMed  Google Scholar 

  54. Marletta, M.A. (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78, 927–930.

    Article  CAS  PubMed  Google Scholar 

  55. Michel, T. and Feron, O. (1997) Nitric oxide synthases: which, where, how, and why? J Clin Invest 100, 2146–2152.

    Article  CAS  PubMed  Google Scholar 

  56. Berkman, N., Robichaud, A., Robbins, R.A., Roesems, G., Haddad, E.B., Barnes, P.J., and Chung, K.F. (1996) Inhibition of induc-ible nitric oxide synthase expression by inter-leukin-4 and interleukin-13 in human lung epithelial cells. Immunology 89, 363–367.

    Article  CAS  PubMed  Google Scholar 

  57. Nussler, A.K. and Billiar, T.R. (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54, 171–178.

    CAS  PubMed  Google Scholar 

  58. Tozer, G.M. and Everett, S.A. (1997) Nitric oxide in tumor biology and cancer therapy. Part 2: therapeutic implications. Clin Oncol (R Coll Radiol) 9, 357–364.

    CAS  Google Scholar 

  59. Hibbs, J.B., Jr., Vavrin, Z., and Taintor, R.R. (1987) L-Arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138, 550–565.

    CAS  PubMed  Google Scholar 

  60. Karupiah, G., Xie, Q.W., Buller, R.M., Nathan, C., Duarte, C., and MacMicking, J.D. (1993) Inhibition of viral replication by interferon–gamma–induced nitric oxide syn– thase. Science 261, 1445–1448.

    Article  CAS  PubMed  Google Scholar 

  61. Green, S.J., Nacy, C.A., and Meltzer, M.S. (1991) Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective hostresponse to Leishmania and other intracel-lular pathogens. J Leukoc Biol 50, 93–103.

    CAS  PubMed  Google Scholar 

  62. Davies, M.G., Fulton, G.J., and Hagen, P.O. (1995) Clinical biology of nitric oxide. Br J Surg 82, 1598–1610.

    Article  CAS  PubMed  Google Scholar 

  63. Geller, D.A., Nussler, A.K., Di Silvio, M., Lowenstein, C.J., Shapiro, R.A., Wang, S.C., Simmons, R.L., and Billiar, T.R. (1993) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A 90, 522–526.

    Article  CAS  PubMed  Google Scholar 

  64. Jaiswal, M., LaRusso, N., and Gores, G. (2000) Cholangiocarcinoma and pro-inflammatory cytokines. Cancer Alert 1, 141–144.

    Google Scholar 

  65. Nathan, C. and Xie, Q.W. (1994) Regulation of biosynthesis of nitric oxide. J Biol Chem 269, 13725–13728.

    CAS  PubMed  Google Scholar 

  66. Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. (1994) Jak–STAT pathways and transcrip– tional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  67. Xie, Q.W., Kashiwabara, Y., and Nathan, C. (1994) Role of transcription factor NF–kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269, 4705–4708.

    CAS  PubMed  Google Scholar 

  68. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. (1998) How cells respond to interferons. Annu Rev Biochem 67, 227–264.

    Article  CAS  PubMed  Google Scholar 

  69. Geller, D.A., Di Silvio, M., Nussler, A.K., Wang, S.C., Shapiro, R.A., Simmons, R.L., and Billiar, T.R. (1993) Nitric oxide syn-thase expression is induced in hepatocytes in vivo during hepatic inflammation. J Surg Res 55, 427–432.

    Article  CAS  PubMed  Google Scholar 

  70. Nussler, A.K., Geller, D.A., Sweetland, M.A., Di Silvio, M., Billiar, T.R., Madariaga, J.B., Simmons, R.L., and Lancaster, J.R., Jr. (1993) Induction of nitric oxide synthesis and its reactions in cultured human and rat hepatocytes stimulated with cytokines plus LPS. Biochem Biophys Res Commun 194, 826–835.

    Article  CAS  PubMed  Google Scholar 

  71. Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S.I., Kimura, T., Green, S.J., et al. (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612–1615.

    Article  CAS  PubMed  Google Scholar 

  72. Saura, M., Zaragoza, C., Bao, C., McMillan, A., and Lowenstein, C.J. (1999) Interaction of interferon regulatory factor-1 and nuclear factor kappaB during activation of inducible nitric oxide synthase transcription. J Mol Biol 289, 459–471.

    Article  CAS  PubMed  Google Scholar 

  73. Perrella, M.A., Pellacani, A., Wiesel, P., Chin, M.T., Foster, L.C., Ibanez, M., Hsieh, C.M., Reeves, R., Yet, S.F., and Lee, M.E. (1999) High mobility group-I(Y) protein facilitates nuclear factor-kappaB binding and transactivation of the inducible nitric–oxide synthase promoter/enhancer. J Biol Chem 274, 9045–9052.

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez-Pascual, F., Hausding, M., Ihrig-Biedert, I., Furneaux, H., Levy, A.P., Forstermann, U., and Kleinert, H. (2000) Complex contribution of the 3′-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem 275, 26040–26049.

    Article  CAS  PubMed  Google Scholar 

  75. Ratovitski, E.A., Bao, C., Quick, R.A., McMillan, A., Kozlovsky, C., and Lowen- stein, C.J. (1999) An inducible nitric-oxide synthase (NOS)-associated protein inhibits NOS dimerization and activity. J Biol Chem 274, 30250–30257.

    Article  CAS  PubMed  Google Scholar 

  76. Vodovotz, Y., Bogdan, C., Paik, J., Xie, Q.W., and Nathan, C. (1993) Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor beta. J Exp Med 178, 605–613.

    Article  CAS  PubMed  Google Scholar 

  77. Taylor, B.S., Alarcon, L.H., and Billiar, T.R. (1998) Inducible nitric oxide synthase in the liver: regulation and function. Biochemistry (Mosc) 63, 766–781.

    CAS  Google Scholar 

  78. Sessa, W.C. (2004) eNOS at a glance. J Cell Sci 117, 2427–2429.

    Article  CAS  PubMed  Google Scholar 

  79. Grumbach, I.M., Chen, W., Mertens, S.A., and Harrison, D.G. (2005) A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothe-lial nitric oxide synthase transcription. J Mol Cell Cardiol 39, 595–603.

    Article  CAS  PubMed  Google Scholar 

  80. Blais, V. and Rivest, S. (2001) Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-kappaB activity and COX-2 transcription in the endothe-lium of the brain capillaries. J Neuropathol Exp Neurol 60, 893–905.

    CAS  PubMed  Google Scholar 

  81. Connelly, L., Jacobs, A.T., Palacios-Cal-lender, M., Moncada, S., and Hobbs, A.J. (2003) Macrophage endothelial nitric-oxide synthase autoregulates cellular activation and pro-inflammatory protein expression. J Biol Chem 278, 26480–26487.

    Article  CAS  PubMed  Google Scholar 

  82. Furchgott, R.F. and Zawadzki, J.V. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376.

    Article  CAS  PubMed  Google Scholar 

  83. Ignarro, L.J., Cirino, G., Casini, A., and Napoli, C. (1999) Nitric oxide as a signaling molecule in the vascular system: an overview. J Cardiovasc Pharmacol 34, 879–886.

    Article  CAS  PubMed  Google Scholar 

  84. Ohashi, Y., Kawashima, S., Hirata, K., Yamashita, T., Ishida, T., Inoue, N., Sakoda, T., Kurihara, H., Yazaki, Y., and Yokoyama, M. (1998) Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest 102, 2061–2071.

    Article  CAS  PubMed  Google Scholar 

  85. Beck, P.L., Xavier, R., Wong, J., Ezedi, I., Mashimo, H., Mizoguchi, A., Mizoguchi, E., Bhan, A.K., Podolsky, D.K. (2004) Paradoxical roles of different nitric oxide syn-thase isoforms in colonic injury. Am J Physiol Gastrointest Liver Physiol 286, G137–G147.

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki, M., Bharwani, S., Jordan, P., Elrod, J.W., Grisham, M.B., Jackson, T.H., Lefer, D.J., and Alexander, J.S. (2003) Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radic Biol Med 35, 1679–1687.

    Article  CAS  PubMed  Google Scholar 

  87. Vallance, B.A., Dijkstra, G., Qiu, B., van der Waaij, L.A., van Goor, H., Jansen, P.L., Mashimo, H., and Collins, S.M. (2004) Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. Am J Physiol Gastrointest Liver Physiol 287, G865–G874.

    Article  CAS  PubMed  Google Scholar 

  88. DiMagno, M.J., Williams, J.A., Hao, Y., Ernst, S.A., and Owyang, C. (2004) Endothe-lial nitric oxide synthase is protective in the initiation of caerulein-induced acute pancreatitis in mice. Am J Physiol Gastrointest Liver Physiol 287, G80–G87.

    Article  CAS  PubMed  Google Scholar 

  89. Qiu, B.S., Mashimo, H., Vallance, B.A., Blennerrhassett, P.A., and Collins, S.M. (1998) Susceptibility of mice with specific NOSgene deletions to experimental colitis. Gastroenterology 114, A1065

    Google Scholar 

  90. Sato, J., Nair, K., Hiddinga, J., Eberhardt, N.L., Fitzpatrick, L.A., Katusic, Z.S., and O'Brien, T. (2000) eNOS gene transfer to vascular smooth muscle cells inhibits cell proliferation via upregulation of p27 and p21 and not apoptosis. Cardiovasc Res 47, 697–706.

    Article  CAS  PubMed  Google Scholar 

  91. Stamler, J.S., Lamas, S., and Fang, F.C. (2001) Nitrosylation. the prototypic redox–based signaling mechanism. Cell 106, 675–683.

    Article  CAS  PubMed  Google Scholar 

  92. Kroncke, K.D., Fehsel, K., Suschek, C., and Kolb-Bachofen, V. (2001) Inducible nitric oxide synthase–derived nitric oxide in gene regulation, cell death and cell survival. Int Immunopharmacol 1, 1407–1420.

    Article  CAS  PubMed  Google Scholar 

  93. Ohshima, H., Tatemichi, M., and Sawa, T. (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417, 3–11.

    Article  CAS  PubMed  Google Scholar 

  94. Yoshie, Y. and Ohshima, H. (1997) Nitric oxide synergistically enhances DNA strand breakage induced by polyhydroxyaromatic compounds, but inhibits that induced by the Fenton reaction. Arch Biochem Biophys 342, 13–21.

    Article  CAS  PubMed  Google Scholar 

  95. Wink, D.A., Grisham, M.B., Mitchell, J.B., and Ford, P.C. (1996) Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. Methods Enzymol 268, 12–31.

    Article  CAS  PubMed  Google Scholar 

  96. Beckman, J.S. (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15, 53–59.

    CAS  PubMed  Google Scholar 

  97. Beckman, J.S. and Koppenol, W.H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271, C1424–C1437.

    CAS  PubMed  Google Scholar 

  98. Pryor, W.A. and Squadrito, G.L. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with super-oxide. Am J Physiol 268, L699–L722.

    CAS  PubMed  Google Scholar 

  99. King, P.A., Anderson, V.E., Edwards, J.O., Gustafson, G., Plumb, R.C., and Suggs, J.W. (1992) A stable solid that generates hydroxyl radical upon dissolution in aqueous solution: reactions with proteins and nucleic acids. J Am Chem Soc 114, 5430–5432

    Article  CAS  Google Scholar 

  100. Salgo, M.G., Stone, K., Squadrito, G.L., Battista, J.R., and Pryor, W.A. (1995) Per-oxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Commun 210, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  101. Fukuto, J.M., Switzer, C.H., Miranda, K.M., and Wink, D.A. (2005) Nitroxyl (HNO): chemistry, biochemistry, and pharmacology. Annu Rev Pharmacol Toxicol45, 335–355.

    Article  CAS  PubMed  Google Scholar 

  102. Ohshima, H., Friesen, M., Brouet, I., and Bartsch, H. (1990) Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol28, 647–652.

    Article  CAS  PubMed  Google Scholar 

  103. Ischiropoulos, H. (1998) Biological tyro-sine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys356, 1–11.

    Article  CAS  PubMed  Google Scholar 

  104. Rohn, T.T. and Quinn, M.T. (1998) Inhibition of peroxynitrite-mediated tyrosine nitration by a novel pyrrolopyrimidine anti-oxidant. Eur J Pharmacol353, 329–336.

    Article  CAS  PubMed  Google Scholar 

  105. Singer, I.I., Kawka, D.W., Scott, S., Wei-dner, J.R., Mumford, R.A., Riehl, T.E., and Stenson, W.F. (1996) Expression of induc-ible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease. Gastroenterology111, 871–885.

    Article  CAS  PubMed  Google Scholar 

  106. Iacopini, F., Consolazio, A., Bosco, D., Marcheggiano, A., Bella, A., Pica, R., Paoluzi, O.A., Crispino, P., Rivera, M., Mot-tolese, M., Nardi, F., and Paoluzi, P. (2003) Oxidative damage of the gastric mucosa in Helicobacter pyloripositive chronic atrophic and nonatrophic gastritis, before and after eradication. Helicobacter8, 503–512.

    Article  CAS  PubMed  Google Scholar 

  107. Kimura, H., Hokari, R., Miura, S., Shige-matsu, T., Hirokawa, M., Akiba, Y., Kurose, I.,Higuchi, H., Fujimori, H., Tsuzuki, Y., Serizawa, H., and Ishii, H. (1998) Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis. Gut42, 180–187.

    Article  CAS  PubMed  Google Scholar 

  108. Kruidenier, L., Kuiper, I., Lamers, C.B., and Verspaget, H.W. (2003) Intestinal oxida-tive damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol201, 28–36.

    Article  CAS  PubMed  Google Scholar 

  109. Mannick, E.E., Bravo, L.E., Zarama, G., Realpe, J.L., Zhang, X.J., Ruiz, B., Fontham, E.T., Mera, R., Miller, M.J., and Correa, P. (1996) Inducible nitric oxide synthase, nitro-tyrosine, and apoptosis in Helicobacter pylorigastritis: effect of antibiotics and antioxidants. Cancer Res56, 3238–3243.

    CAS  PubMed  Google Scholar 

  110. Pignatelli, B., Bancel, B., Plummer, M., Toyokuni, S., Patricot, L.M., and Ohshima, H. (2001) Helicobacter pylorieradication attenuates oxidative stress in human gastric mucosa. Am J Gastroenterol96, 1758–1766.

    Article  CAS  PubMed  Google Scholar 

  111. Kato, H., Miyazaki, T., Yoshikawa, M., Naka-jima, M., Fukai, Y., Tajima, K., Masuda, N., Tsutsumi, S., Tsukada, K., Nakajima, T., and Kuwano, H. (2000) Nitrotyrosine in esopha-geal squamous cell carcinoma and relevance to p53 expression. Cancer Lett153, 121–127.

    Article  CAS  PubMed  Google Scholar 

  112. Jaiswal, M., LaRusso, N.F., Shapiro, R.A., Billiar, T.R., and Gores, G.J. (2001) Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholan-giocytes. Gastroenterology120, 190–199.

    Article  CAS  PubMed  Google Scholar 

  113. Vickers, S.M., MacMillan-Crow, L.A., Green, M., Ellis, C., and Thompson, J.A. (1999) Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg134, 245–251.

    Article  CAS  PubMed  Google Scholar 

  114. Seril, D.N., Liao, J., Ho, K.L., Warsi, A., Yang, C.S., and Yang, G.Y. (2002) Dietary iron sup plementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig Dis Sci47, 1266–1278.

    Article  CAS  PubMed  Google Scholar 

  115. Lala, P.K. and Chakraborty, C. (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol2, 149–156.

    Article  CAS  PubMed  Google Scholar 

  116. Wink, D.A., Vodovotz, Y., Cook, J.A., Krishna, M.C., Kim, S., Coffin, D., DeGraff, W., Deluca, A.M., Liebmann, J., and Mitchell, J.B. (1998) The role of nitric oxide chemistry in cancer treatment. Biochemistry (Mosc)63, 802–809.

    CAS  Google Scholar 

  117. Szabo, C. and Ohshima, H. (1997) DNA damage induced by peroxynitrite: subsequent biological effects. Nitric Oxide1, 373–385.

    Article  CAS  PubMed  Google Scholar 

  118. Ohshima, H., Yermilov, V., Yoshie, Y., and Rubio, J. (1999) DNA damage induced by reactive oxygen species. In Advances in DNA Damage and Repair(Dizdaroglu, M. and Karakaya, A., eds), pp. 329–339, Plenum, New York

    Google Scholar 

  119. Burney, S., Caulfield, J.L., Niles, J.C., Wish-nok, J.S., and Tannenbaum, S.R. (1999) The chemistry of DNA damage from nitric oxide and peroxynitrite. Mutat Res424, 37–49.

    CAS  PubMed  Google Scholar 

  120. Dedon, P.C. and Tannenbaum, S.R. (2004) Reactive nitrogen species in the chemical biology of inflammation. Arch Biochem Bio-phys423, 12–22.

    Article  CAS  Google Scholar 

  121. Rubbo, H., Darley-Usmar, V., and Freeman, B.A. (1996) Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol9, 809–820.

    Article  CAS  PubMed  Google Scholar 

  122. Stamler, J.S., Singel, D.J., and Loscalzo, J. (1992) Biochemistry of nitric oxide and its redox-activated forms. Science258, 1898–1902.

    Article  CAS  PubMed  Google Scholar 

  123. Shimkin, M. (1977) Contrary to Nature. DHEW Publication No. (NIH) 76–720, Department of Health and Human Services, Washington, DC

    Google Scholar 

  124. Triolo, V.A. (1965) Nineteenth century foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res25, 75–106.

    CAS  PubMed  Google Scholar 

  125. Gardner, A.W. (1959) Trauma and squa-mous skin cancer. Lancet1, 760–761.

    Article  CAS  PubMed  Google Scholar 

  126. Lawrence, E. (1952) Carcinoma arising in the scars of thermal burns. Surg Gynecol Obstet95, 579–580

    CAS  PubMed  Google Scholar 

  127. Menkin, V. (1960) Role of inflammation in carcinogenesis. Br Med J5186, 1585–1594

    Article  Google Scholar 

  128. Cruickshank, A.H., McConnell, E.M., and Miller, D.G. (1963) Malignancy in scars, chronic ulcers, and sinuses. J Clin Pathol16, 573–580.

    Article  CAS  PubMed  Google Scholar 

  129. DaCosta, J. (1903) Carcinomatous changes in an area of chronic ulceration of Marjolin's ulcer. Ann Surg37, 496–502

    CAS  Google Scholar 

  130. Lovell, W. (1957) Carcinoma of skin, sinuses and bone following chronic osteomyelitis. South Med J50, 266–271

    CAS  PubMed  Google Scholar 

  131. Curry, S.S., Gaither, D.H., and King, L.E., Jr. (1981) Squamous cell carcinoma arising in dissecting perifolliculitis of the scalp. A case report and review of secondary squa-mous cell carcinomas. J Am Acad Dermatol4, 673–678.

    Article  CAS  PubMed  Google Scholar 

  132. Kapadia, C.R. (1997) Oxides, onions, and other matters gastrointestinal – 1996 – a perspective. J Clin Gastroenterol24, 133–139.

    Article  CAS  PubMed  Google Scholar 

  133. Kroncke, K.D., Fehsel, K., and Kolb-Ba-chofen, V. (1998) Inducible nitric oxide synthase in human diseases. Clin Exp Immunol113, 147–156.

    Article  CAS  PubMed  Google Scholar 

  134. Ohshima, H. and Bartsch, H. (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res305, 253–264.

    CAS  PubMed  Google Scholar 

  135. Balkwill, F. and Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet357, 539–545.

    Article  CAS  PubMed  Google Scholar 

  136. Coussens, L.M. and Werb, Z. (2002) Inflammation and cancer. Nature420, 860–867.

    Article  CAS  PubMed  Google Scholar 

  137. Ferguson, A. (1911) Associated bilharziosis and primary malignant disease of the urinary bladder, with observations on a series of forty cases. J Pathol Bacteriol16, 76–94

    Article  Google Scholar 

  138. Kantor, A.F., Hartge, P., Hoover, R.N., and Fraumeni, J.F., Jr. (1988) Epidemiological characteristics of squamous cell carcinoma and adenocarcinoma of the bladder. Cancer Res48, 3853–3855.

    CAS  PubMed  Google Scholar 

  139. Locke, J.R., Hill, D.E., and Walzer, Y. (1985) Incidence of squamous cell carcinoma in patients with long-term catheter drainage. J Urol133, 1034–1035.

    CAS  PubMed  Google Scholar 

  140. Cameron, A.J., Ott, B.J., and Payne, W.S. (1985) The incidence of adenocarcinoma in columnar-lined (Barrett's) esophagus. N Engl J Med313, 857–859.

    Article  CAS  PubMed  Google Scholar 

  141. Dahms, B.B. and Rothstein, F.C. (1984) Barrett's esophagus in children: a consequence of chronic gastroesophageal reflux. Gastroenterology86, 318–323.

    CAS  PubMed  Google Scholar 

  142. Correa, P. (1988) A human model of gastric carcinogenesis. Cancer Res48, 3554–3560.

    CAS  PubMed  Google Scholar 

  143. Diehl, A.K. (1983) Gallstone size and the risk of gallbladder cancer. JAMA 250, 2323–2326.

    Article  CAS  PubMed  Google Scholar 

  144. Farges, O., Malassagne, B., Sebagh, M., and Bismuth, H. (1995) Primary sclerosing cholangitis: liver transplantation or biliary surgery. Surgery117, 146–155.

    Article  CAS  PubMed  Google Scholar 

  145. Collins, R.H., Jr., Feldman, M., and Fordtran, J.S. (1987) Colon cancer, dyspla-sia, and surveillance in patients with ulcera-tive colitis. A critical review. N Engl J Med316, 1654–1658.

    Article  PubMed  Google Scholar 

  146. Korelitz, B.I. (1983) Carcinoma of the intestinal tract in Crohn's disease: results of a survey conducted by the National Foundation for Ileitis and colitis. Am J Gastroenterol78, 44–46.

    CAS  PubMed  Google Scholar 

  147. O'Byrne, K.J. and Dalgleish, A.G. (2001) Chronic immune activation and inflammation as the cause of malignancy. Br J Cancer85, 473–483.

    Article  PubMed  Google Scholar 

  148. Christen, S, et al. (1999) Chronic Inflammation, Mutation, and Cancer, Oxford University Press, New York

    Google Scholar 

  149. Adler, V., Yin, Z., Tew, K.D., and Ronai, Z. (1999) Role of redox potential and reactive oxygen species in stress signaling. Oncogene18, 6104–6111.

    Article  CAS  PubMed  Google Scholar 

  150. Shackelford, R.E., Kaufmann, W.K., and Paules, R.S. (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med28, 1387–1404.

    Article  CAS  PubMed  Google Scholar 

  151. Kyriakis, J.M. and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev81, 807–869.

    CAS  PubMed  Google Scholar 

  152. Cerutti, P.A. and Trump, B.F. (1991) Inflammation and oxidative stress in car-cinogenesis. Cancer Cells3, 1–7.

    CAS  PubMed  Google Scholar 

  153. Shalon, D., Smith, S.J., and Brown, P.O. (1996) A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res6, 639–645.

    Article  CAS  PubMed  Google Scholar 

  154. Cerutti, P.A. (1985) Prooxidant states and tumor promotion. Science227, 375–381.

    Article  CAS  PubMed  Google Scholar 

  155. Wilson, K.T., Fu, S., Ramanujam, K.S., and Meltzer, S.J. (1998) Increased expression of inducible nitric oxide synthase and cycloox-ygenase-2 in Barrett's esophagus and associated adenocarcinomas. Cancer Res58, 2929–2934.

    CAS  PubMed  Google Scholar 

  156. Majano, P.L., Garcia-Monzon, C., Lopez-Cabrera, M., Lara-Pezzi, E., Fernandez-Ruiz, E., Garcia-Iglesias, C., Borque, M.J., and Moreno-Otero, R. (1998) Inducible nitric oxide synthase expression in chronic viral hepatitis. Evidence for a virus-induced gene upregulation. J Clin Invest101, 1343–1352.

    Article  CAS  PubMed  Google Scholar 

  157. Tsuji, S., Tsujii, M., Sun, W.H., Gunawan, E.S., Murata, H., Kawano, S., and Hori, M. (1997) Helicobacter pyloriand gastric car-cinogenesis. J Clin Gastroenterol25 Suppl 1, S186–S197.

    Article  PubMed  Google Scholar 

  158. Rachmilewitz, D., Karmeli, F., Eliakim, R., Stalnikowicz, R., Ackerman, Z., Amir, G., and Stamler, J.S. (1994) Enhanced gastric nitric oxide synthase activity in duodenal ulcer patients. Gut35, 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  159. Streitz, J.M., Jr. (1994) Barrett's esophagus and esophageal cancer. Chest Surg Clin N Am4, 227–240.

    PubMed  Google Scholar 

  160. Crowell, J.A., Steele, V.E., Sigman, C.C., and Fay, J.R. (2003) Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther2, 815–823.

    CAS  PubMed  Google Scholar 

  161. Thomsen, L.L. and Miles, D.W. (1998) Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev17, 107–118.

    Article  CAS  PubMed  Google Scholar 

  162. Seril, D.N., Liao, J., and Yang, G.Y. (2007) Colorectal carcinoma development in induc-ible nitric oxide synthase-deficient mice with dextran sulfate sodium-induced ulcerative colitis. Mol Carcinog46, 341–353.

    Article  CAS  PubMed  Google Scholar 

  163. Ahn, B., Han, B.S., Kim, D.J., and Ohshima, H. (1999) Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis20, 1337–1344.

    Article  CAS  PubMed  Google Scholar 

  164. Gal, A., Tamir, S., Tannenbaum, S.R., and Wogan, G.N. (1996) Nitric oxide production in SJL mice bearing the RcsX lym-phoma: a model for in vivo toxicological evaluation of NO. Proc Natl Acad Sci U S A93, 11499–11503.

    Article  CAS  PubMed  Google Scholar 

  165. Nair, J., Gal, A., Tamir, S., Tannenbaum, S.R., Wogan, G.N., and Bartsch, H. (1998) Etheno adducts in spleen DNA of SJL mice stimulated to overproduce nitric oxide. Car-cinogenesis19, 2081–2084.

    Article  CAS  Google Scholar 

  166. Goldstein, S.R., Yang, G.Y., Chen, X., Curtis, S.K., and Yang, C.S. (1998) Studies of iron deposits, inducible nitric oxide synthase and nitrotyrosine in a rat model for esophageal adenocarcinoma. Carcinogenesis19, 1445–1449.

    Article  CAS  PubMed  Google Scholar 

  167. Gal, A. and Wogan, G.N. (1996) Mutagen-esis associated with nitric oxide production in transgenic SJL mice. Proc Natl Acad Sci U S A93, 15102–15107.

    Article  CAS  PubMed  Google Scholar 

  168. Tamir, S., deRojas-Walker, T., Gal, A., Weller, A.H., Li, X., Fox, J.G., Wogan, G.N., and Tannenbaum, S.R. (1995) Nitric oxide production in relation to spontaneous B-cell lymphoma and myositis in SJL mice. Cancer Res55, 4391–4397.

    CAS  PubMed  Google Scholar 

  169. Roediger, W.E., Lawson, M.J., and Rad-cliffe, B.C. (1990) Nitrite from inflammatory cells – a cancer risk factor in ulcerative colitis? Dis Colon Rectum33, 1034–1036.

    Article  CAS  PubMed  Google Scholar 

  170. Rosen, C.B., Nagorney, D.M., Wiesner, R.H., Coffey, R.J., Jr., and LaRusso, N.F. (1991) Cholangiocarcinoma complicating primary sclerosing cholangitis. Ann Surg213, 21–25.

    Article  CAS  PubMed  Google Scholar 

  171. Watanapa, P. (1996) Cholangiocarcinoma in patients with opisthorchiasis. Br J Surg83, 1062–1064.

    Article  CAS  PubMed  Google Scholar 

  172. Taylor, B.S., de Vera, M.E., Ganster, R.W., Wang, Q., Shapiro, R.A., Morris, S.M., Jr., Billiar, T.R., and Geller, D.A. (1998) Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem273, 15148–15156.

    Article  CAS  PubMed  Google Scholar 

  173. Mirvish, S.S. (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyn-geal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett93, 17–48.

    Article  CAS  PubMed  Google Scholar 

  174. Haswell-Elkins, M.R., Satarug, S., Tsuda, M., Mairiang, E., Esumi, H., Sithithaworn, P., Mairiang, P., Saitoh, M., Yongvanit, P., and Elkins, D.B. (1994) Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosa-tion in human carcinogenesis. Mutat Res305, 241–252.

    CAS  PubMed  Google Scholar 

  175. Mordan, L.J., Burnett, T.S., Zhang, L.X., Tom, J., and Cooney, R.V. (1993) Inhibitors of endogenous nitrogen oxide formation block the promotion of neoplastic transformation in C3H 10T1/2 fibroblasts. Carcinogenesis14, 1555–1559.

    Article  CAS  PubMed  Google Scholar 

  176. Ahn, B. and Ohshima, H. (2001) Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res61, 8357–8360.

    CAS  PubMed  Google Scholar 

  177. Ellies, L.G., Fishman, M., Hardison, J., Kleeman, J., Maglione, J.E., Manner, C.K., Cardiff, R.D., and MacLeod, C.L. (2003) Mammary tumor latency is increased in mice lacking the inducible nitric oxide syn-thase. Int J Cancer106, 1–7.

    Article  CAS  PubMed  Google Scholar 

  178. Kisley, L.R., Barrett, B.S., Bauer, A.K., Dwyer-Nield, L.D., Barthel, B., Meyer, A.M., Thompson, D.C., and Malkinson, A.M. (2002) Genetic ablation of inducible nitric oxide synthase decreases mouse lung tum-origenesis. Cancer Res62, 6850–6856.

    CAS  PubMed  Google Scholar 

  179. Nam, K.T., Oh, S.Y., Ahn, B., Kim, Y.B., Jang, D.D., Yang, K.H., Hahm, K.B., and Kim, D.Y. (2004) Decreased Helicobacter pyloriassociated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut53, 1250–1255.

    Article  CAS  PubMed  Google Scholar 

  180. Scott, D.J., Hull, M.A., Cartwright, E.J., Lam, W.K., Tisbury, A., Poulsom, R., Markham, A.F., Bonifer, C., and Coletta, P.L. (2001) Lack of inducible nitric oxide syn-thase promotes intestinal tumorigenesis in the Apc(Min/+) mouse. Gastroenterology121, 889–899.

    Article  CAS  PubMed  Google Scholar 

  181. Hussain, S.P., Trivers, G.E., Hofseth, L.J., He, P., Shaikh, I., Mechanic, L.E., Doja, S., Jiang, W., Subleski, J., Shorts, L., Haines, D., Laubach, V.E., Wiltrout, R.H., Djurickovic, D., and Harris, C.C. (2004) Nitric oxide, a mediator of inflammation, suppresses tum-origenesis. Cancer Res64, 6849–6853.

    Article  CAS  PubMed  Google Scholar 

  182. Wink, D.A., Kasprzak, K.S., Maragos, C.M., Elespuru, R.K., Misra, M., Dunams, T.M., Cebula, T.A., Koch, W.H., Andrews, A.W., Allen, J.S., et al. (1991) DNA deaminating ability and genotoxiCity of nitric oxide and its progenitors. Science254, 1001–1003.

    Article  CAS  PubMed  Google Scholar 

  183. Jenkins, D.C., Charles, I.G., Thomsen, L.L., Moss, D.W., Holmes, L.S., Baylis, S.A., Rhodes, P., Westmore, K., Emson, P.C., and Moncada, S. (1995) Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A92, 4392–4396.

    Article  CAS  PubMed  Google Scholar 

  184. Ambs, S., Ogunfusika, M.O., Merriam, W.G., Bennett, W.P., Billiar, T.R., and Harris, C.C. (1998) Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci U S A95, 8823–8828.

    Article  CAS  PubMed  Google Scholar 

  185. Li, J., Billiar, T.R., Talanian, R.V., and Kim, Y.M. (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Com-mun240, 419–424.

    Article  CAS  Google Scholar 

  186. Fukumura, D., Kashiwagi, S., and Jain, R.K. (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer6, 521–534.

    Article  CAS  PubMed  Google Scholar 

  187. Lancaster, J.R., Jr. and Xie, K. (2006) Tumors face NO problems? Cancer Res66, 6459–6462.

    Article  CAS  PubMed  Google Scholar 

  188. Xie, K. and Fidler, I.J. (1998) Therapy of cancer metastasis by activation of the induc-ible nitric oxide synthase. Cancer Metastasis Rev17, 55–75.

    Article  CAS  PubMed  Google Scholar 

  189. Wang, B., Xiong, Q., Shi, Q., Le, X., Abbruzzese, J.L., and Xie, K. (2001) Intact nitric oxide synthase II gene is required for interferon-beta-mediated suppression of growth and metastasis of pancreatic adeno-carcinoma. Cancer Res61, 71–75.

    CAS  PubMed  Google Scholar 

  190. Wang, B., Xiong, Q., Shi, Q., Tan, D., Le, X., and Xie, K. (2001) Genetic disruption of host nitric oxide synthase II gene impairs melanoma-induced angiogenesis and suppresses pleural effusion. Int J Cancer91, 607–611.

    Article  CAS  PubMed  Google Scholar 

  191. Juang, S.H., Xie, K., Xu, L., Shi, Q., Wang, Y., Yoneda, J., and Fidler, I.J. (1998) Suppression of tumorigeniCity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther9, 845–854.

    Article  CAS  PubMed  Google Scholar 

  192. Shi, Q., Huang, S., Jiang, W., Kutach, L.S., Ananthaswamy, H.N., and Xie, K. (1999) Direct correlation between nitric oxide syn-thase II inducibility and metastatic ability of UV-2237 murine fibrosarcoma cells carrying mutant p53. Cancer Res59, 2072–2075.

    CAS  PubMed  Google Scholar 

  193. Shi, Q., Xiong, Q., Wang, B., Le, X., Khan, N.A., and Xie, K. (2000) Influence of nitric oxide synthase II gene disruption on tumor growth and metastasis. Cancer Res60, 2579–2583.

    CAS  PubMed  Google Scholar 

  194. Xie, K., Huang, S., Dong, Z., Gutman, M., and Fidler, I.J. (1995) Direct correlation between expression of endogenous induc-ible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP 31362. Cancer Res55, 3123–3131.

    CAS  PubMed  Google Scholar 

  195. Xie, K., Dong, Z., and Fidler, I.J. (1996) Activation of nitric oxide synthase gene for inhibition of cancer metastasis. J Leukoc Biol59, 797–803.

    CAS  PubMed  Google Scholar 

  196. Dong, Z., Staroselsky, A.H., Qi, X., Xie, K., and Fidler, I.J. (1994) Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res54, 789–793.

    CAS  PubMed  Google Scholar 

  197. Xie, K., Huang, S., Dong, Z., Juang, S.H., Gutman, M., Xie, Q.W., Nathan, C., and Fidler, I.J. (1995) Transfection with the inducible nitric oxide synthase gene suppresses tumorigeniCity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med181, 1333–1343.

    Article  CAS  PubMed  Google Scholar 

  198. Xie, K., Huang, S., Dong, Z., Juang, S.H., Wang, Y., and Fidler, I.J. (1997) Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J Natl Cancer Inst89, 421–427.

    Article  CAS  PubMed  Google Scholar 

  199. Ambs, S., Merriam, W.G., Ogunfusika, M.O., Bennett, W.P., Ishibe, N., Hussain, S.P., Tzeng, E.E., Geller, D.A., Billiar, T.R., and Harris, C.C. (1998) p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med4, 1371–1376.

    Article  CAS  PubMed  Google Scholar 

  200. Ho, Y.S., Wang, Y.J., and Lin, J.K. (1996) Induction of p53 and p21/WAF1/CIP1 expression by nitric oxide and their association with apoptosis in human cancer cells. Mol Carcinog16, 20–31.

    Article  CAS  PubMed  Google Scholar 

  201. Wink, D.A. and Mitchell, J.B. (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotec-tive mechanisms of nitric oxide. Free Radic Biol Med 25, 434–456.

    Article  CAS  PubMed  Google Scholar 

  202. Xu, W., Liu, L., Smith, G.C., and Charles, G. (2000) Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat Cell Biol 2, 339–345.

    Article  CAS  PubMed  Google Scholar 

  203. Hussain, S.P. and Harris, C.C. (1999) p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Mutat Res 428, 23–32.

    CAS  PubMed  Google Scholar 

  204. Olivier, M., Eeles, R., Hollstein, M., Khan, M.A., Harris, C.C., and Hainaut, P. (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19, 607–614.

    Article  CAS  PubMed  Google Scholar 

  205. Ekmekcioglu, S., Tang, C.H., and Grimm, E.A. (2005) NO news is not necessarily good news in cancer. Curr Cancer Drug Targets 5, 103–115.

    Article  CAS  PubMed  Google Scholar 

  206. Cooper, H.S., Everley, L., Chang, W.C., Pfeiffer, G., Lee, B., Murthy, S., and Clapper, M.L. (2001) The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology 121, 1407–1416.

    Article  CAS  PubMed  Google Scholar 

  207. Mabley, J.G., Pacher, P. , Bai, P. , Wallace, R., Goonesekera, S., Virag, L., Southan, G.J., and Szabo, C. (2004) Suppression of intestinal polyposis in ApcMin/+ mice by targeting the nitric oxide or poly(ADP-ribose) pathways. Mutat Res 548, 107–116.

    CAS  PubMed  Google Scholar 

  208. Tamir, S., Burney, S., and Tannenbaum, S.R. (1996) DNA damage by nitric oxide. Chem Res Toxicol 9, 821–827.

    Article  CAS  PubMed  Google Scholar 

  209. Felley-Bosco, E., Mirkovitch, J., Ambs, S., Mace, K., Pfeifer, A., Keefer, L.K., and Harris, C.C. (1995) Nitric oxide and ethylni-trosourea: relative mutageniCity in the p53 tumor suppressor and hypoxanthine-phos-phoribosyltransferase genes. Carcinogenesis 16, 2069–2074.

    Article  CAS  PubMed  Google Scholar 

  210. Juedes, M.J. and Wogan, G.N. (1996) Peroxynitrite-induced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat Res 349, 51–61.

    PubMed  Google Scholar 

  211. Li, C.Q., Trudel, L.J., and Wogan, G.N. (2002) GenotoxiCity, mitochondrial damage, and apoptosis in human lymphoblastoid cells exposed to peroxynitrite generated from SIN-1. Chem Res Toxicol 15, 527–535.

    Article  CAS  PubMed  Google Scholar 

  212. Tannenbaum, S.R., Tamir, S., Rojas-Walker, T.D., and Wishnok, J.S. (1994) DNA damage and cytotoxiCity of nitric oxide. In Nitrosamines and Related Nitroso-Compound Chemistry and Biochemistry (Loepsky, R.N. and Michejda, C.J., eds), pp. 120–135, American Chemical Society, Washington, DC.

    Chapter  Google Scholar 

  213. Nguyen, T., Brunson, D., Crespi, C.L., Penman, B.W., Wishnok, J.S., and Tan-nenbaum, S.R. (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A 89, 3030–3034.

    Article  CAS  PubMed  Google Scholar 

  214. Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S., and Loeb, L.A. (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem 267, 166–172.

    CAS  PubMed  Google Scholar 

  215. Routledge, M.N., Wink, D.A., Keefer, L.K., and Dipple, A. (1993) Mutations induced by saturated aqueous nitric oxide in the pSP189 supF gene in human Ad293 and E. coli MBM7070 cells. Carcinogenesis 14, 1251–1254.

    Article  CAS  PubMed  Google Scholar 

  216. Routledge, M.N., Wink, D.A., Keefer, L.K., and Dipple, A. (1994) DNA sequence changes induced by two nitric oxide donor drugs in the supF assay. Chem Res Toxicol 7, 628–632.

    Article  CAS  PubMed  Google Scholar 

  217. Ambs, S.B., Bennett, W.P., Merriam, W.G., Ogunfusika, M.O., Oser, S.M., Harrington, A.M., Shields, P.G., Felley-Bosco, E., Hus-sain, S.P., Harris, C.C. (1999) Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorec-tal cancer. J Natl Cancer Inst 91, 86–88.

    Article  CAS  PubMed  Google Scholar 

  218. Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855–4878.

    CAS  PubMed  Google Scholar 

  219. Harris, C.C. and Hollstein, M. (1993) Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329, 1318–1327.

    Article  CAS  PubMed  Google Scholar 

  220. Souici, A.C., Mirkovitch, J., Hausel, P., Keefer, L.K., and Felley-Bosco, E. (2000) Transition mutation in codon 248 of the p53 tumor suppressor gene induced by reactive oxygen species and a nitric oxide-releasing compound. Carcinogenesis 21, 281–287.

    Article  CAS  PubMed  Google Scholar 

  221. Yermilov, V., Rubio, J., Becchi, M., Friesen, M.D., Pignatelli, B., and Ohshima, H. (1995) Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 16, 2045–2050.

    Article  CAS  PubMed  Google Scholar 

  222. Yermilov, V., Rubio, J., and Ohshima, H. (1995) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurina-tion. FEBS Lett 376, 207–210.

    Article  CAS  PubMed  Google Scholar 

  223. Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R. (2001) A novel nitroimidazole compound formed during the reaction of perox-ynitrite with 2′,3′,5′-tri-O-acetyl-guanosine. J Am Chem Soc 123, 12147–12151.

    Article  CAS  PubMed  Google Scholar 

  224. Byun, J., Henderson, J.P., Mueller, D.M., and Heinecke, J.W. (1999) 8-Nitro-2′-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes. Biochemistry 38, 2590–2600.

    Article  CAS  PubMed  Google Scholar 

  225. Joffe, A., Mock, S., Yun, B.H., Kolbanovskiy, A., Geacintov, N.E., and Shafirovich, V. (2003) Oxidative generation of guanine radicals by carbonate radicals and their reactions with nitrogen dioxide to form site specific 5-guanidino-4-nitroimidazole lesions in oligodeoxynucleotides. Chem Res Toxicol 16, 966–973.

    Article  CAS  PubMed  Google Scholar 

  226. Neeley, W.L., Delaney, J.C., Henderson, P.T., and Essigmann, J.M. (2004) In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimida-zolone and 5-guanidino-4-nitroimidazole. J Biol Chem 279, 43568–43573.

    Article  CAS  PubMed  Google Scholar 

  227. Yermilov, V., Yoshie, Y., Rubio, J., and Ohshima, H. (1996) Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-ni-troguanine, 8-oxoguanine and base-prope-nal mediated by peroxynitrite. FEBS Lett 399, 67–70.

    Article  CAS  PubMed  Google Scholar 

  228. Suzuki, N., Yasui, M., Geacintov, N.E., Shafirovich, V., and Shibutani, S. (2005) Miscoding events during DNA synthesis past the nitration-damaged base 8-nitrogua-nine. Biochemistry 44, 9238–9245.

    Article  CAS  PubMed  Google Scholar 

  229. Masuda, M., Nishino, H., and Ohshima, H. (2002) Formation of 8-nitroguanosine in cellular RNA as a biomarker of exposure to reactive nitrogen species. Chem Biol Interact 139, 187–197.

    Article  CAS  PubMed  Google Scholar 

  230. Witherell, H.L., Hiatt, R.A., Replogle, M., and Parsonnet, J. (1998) Helicobacter pylori infection and urinary excretion of 8-hy-droxy-2-deoxyguanosine, an oxidative DNA adduct. Cancer Epidemiol Biomarkers Prev 7, 91–96.

    CAS  PubMed  Google Scholar 

  231. Kiziltepe, T., Yan, A., Dong, M., Jonnala-gadda, V.S., Dedon, P.C., and Engelward, B.P. (2005) Delineation of the chemical pathways underlying nitric oxide-induced homologous recombination in mammalian cells. Chem Biol 12, 357–369.

    Article  CAS  PubMed  Google Scholar 

  232. Uppu, R.M., Cueto, R., Squadrito, G.L., Salgo, M.G., and Pryor, W.A. (1996) Competitive reactions of peroxynitrite with 2′-deoxyguanosine and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG): relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Radic Biol Med 21, 407–411.

    Article  CAS  PubMed  Google Scholar 

  233. Niles, J.C., Wishnok, J.S., and Tannen-baum, S.R. (2004) Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 180. Chem Res Toxicol 17, 1510–1519.

    Article  CAS  PubMed  Google Scholar 

  234. Henderson, P.T., Delaney, J.C., Muller, J.G., Neeley, W.L., Tannenbaum, S.R., Burrows, C.J., and Essigmann, J.M. (2003) The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Biochemistry 42, 9257–9262.

    Article  CAS  PubMed  Google Scholar 

  235. Ohshima, H. and Bartsch, H. (1999) Quantitative estimation of endogenous N-nitrosation in humans by monitoring N-nitrosoproline in urine. Methods Enzymol 301, 40–49.

    Article  CAS  PubMed  Google Scholar 

  236. Yoshie, Y. and Ohshima, H. (1997) Syn-ergistic induction of DNA strand breakage caused by nitric oxide together with catecho-lamine: implications for neurodegenerative disease. Chem Res Toxicol 10, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  237. Yoshie, Y. and Ohshima, H. (1997) Syner-gistic induction of DNA strand breakage by cigarette tar and nitric oxide. Carcinogenesis 18, 1359–1363.

    Article  CAS  PubMed  Google Scholar 

  238. Yoshie, Y. and Ohshima, H. (1998) Syner-gistic induction of DNA strand breakage by catechol-estrogen and nitric oxide: implications for hormonal carcinogenesis. Free Radic Biol Med 24, 341–348.

    Article  CAS  PubMed  Google Scholar 

  239. Inoue, S. and Kawanishi, S. (1995) Oxida-tive DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett 371, 86–88.

    Article  CAS  PubMed  Google Scholar 

  240. Epe, B., Ballmaier, D., Roussyn, I., Briviba, K., and Sies, H. (1996) DNA damage by per-oxynitrite characterized with DNA repair enzymes. Nucleic Acids Res 24, 4105–4110.

    Article  CAS  PubMed  Google Scholar 

  241. Hogg, N., Darley-Usmar, V.M., Wilson, M.T., and Moncada, S. (1992) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J 281 (Pt 2), 419–424.

    CAS  PubMed  Google Scholar 

  242. Ohshima, H., Gilibert, I., and Bianchini, F. (1999) Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radic Biol Med 26, 1305–1313.

    Article  CAS  PubMed  Google Scholar 

  243. Chazotte-Aubert, L., Oikawa, S., Gilibert, I., Bianchini, F., Kawanishi, S., and Ohshima, H. (1999) CytotoxiCity and site-specific DNA damage induced by nitroxyl anion (NO(−)) in the presence of hydrogen peroxide. Implications for various pathophysiological conditions. J Biol Chem 274, 20909–20915.

    Article  CAS  PubMed  Google Scholar 

  244. Ohshima, H., Yoshie, Y., Auriol, S., and Gilibert, I. (1998) Antioxidant and pro-ox-idant actions of flavonoids: effects on DNA damage induced by nitric oxide, peroxyni-trite and nitroxyl anion. Free Radic Biol Med 25, 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  245. Kowalczykowski, S.C. (2000) Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25, 156–165.

    Article  CAS  PubMed  Google Scholar 

  246. Wink, D.A., Feelisch, M., Fukuto, J., Chisto-doulou, D., Jourd'heuil, D., Grisham, M.B., Vodovotz, Y., Cook, J.A., Krishna, M., DeGraff, W.G., Kim, S., Gamson, J., and Mitchell, J.B. (1998) The cytotoxiCity of nitroxyl: possible implications for the patho-physiological role of NO. Arch Biochem Bio-phys 351, 66–74.

    Article  CAS  Google Scholar 

  247. Bishop, A.J. and Schiestl, R.H. (2002) Homologous recombination and its role in carcinogenesis. J Biomed Biotechnol 2, 75–85.

    Article  CAS  PubMed  Google Scholar 

  248. Khanna, K.K. and Jackson, S.P. (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27, 247–254.

    Article  CAS  PubMed  Google Scholar 

  249. Darley-Usmar, V.M., Hogg, N., O'Leary, V.J., Wilson, M.T., and Moncada, S. (1992) The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun 17, 9–20.

    Article  CAS  PubMed  Google Scholar 

  250. Padgett, C.M. and Whorton, A.R. (1998) Cellular responses to nitric oxide: role of protein S-thiolation/dethiolation. Arch Bio-chem Biophys 358, 232–242.

    Article  CAS  Google Scholar 

  251. Sawa, T., Akaike, T., and Maeda, H. (2000) Tyrosine nitration by peroxynitrite formed from nitric oxide and superoxide generated by xanthine oxidase. J Biol Chem 275, 32467–32474.

    Article  CAS  PubMed  Google Scholar 

  252. Suzuki, T., Mower, H.F., Friesen, M.D., Gilibert, I., Sawa, T., and Ohshima, H. (2004) Nitration and nitrosation of N-acetyl-L-tryptophan and tryptophan residues in proteins by various reactive nitrogen species. Free Radic Biol Med 37, 671–681.

    Article  CAS  PubMed  Google Scholar 

  253. Radi, R., Rodriguez, M., Castro, L., and Telleri, R. (1994) Inhibition of mitochon-drial electron transport by peroxynitrite. Arch Biochem Biophys 308, 89–95.

    Article  CAS  PubMed  Google Scholar 

  254. Weiss, G., Goossen, B., Doppler, W., Fuchs, D., Pantopoulos, K., Werner-Felmayer, G., Wachter, H., and Hentze, M.W. (1993) Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 12, 3651–3657.

    CAS  PubMed  Google Scholar 

  255. Lepoivre, M., Flaman, J.M., Bobe, P., Lemaire, G., and Henry, Y. (1994) Quenching of the tyrosyl free radical of ribonucle-otide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 269, 21891–21897.

    CAS  PubMed  Google Scholar 

  256. Chien, Y.H., Bau, D.T., and Jan, K.Y. (2004) Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic Biol Med 36, 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  257. Friedberg, E.C. (1996) Relationships between DNA repair and transcription. Annu Rev Biochem 65, 15–42.

    Article  CAS  PubMed  Google Scholar 

  258. Sancar, A. (1996) DNA excision repair. Annu Rev Biochem 65, 43–81.

    Article  CAS  PubMed  Google Scholar 

  259. Wood, R.D. (1996) DNA repair in eukaryo-tes. Annu Rev Biochem 65, 135–167.

    Article  CAS  PubMed  Google Scholar 

  260. Jaiswal, M., Lipinski, L.J., Bohr, V.A., and Mazur, S.J. (1998) Efficient in vitro repair of 7-hydro-8-oxodeoxyguanosine by human cell extracts: involvement of multiple pathways. Nucleic Acids Res 26, 2184–2191.

    Article  CAS  PubMed  Google Scholar 

  261. Laval, J., Jurado, J., Saparbaev, M., and Sidorkina, O. (1998) Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage. Mutat Res 402, 93–102.

    CAS  PubMed  Google Scholar 

  262. Laval, F., Wink, D.A., and Laval, J. (1997) A discussion of mechanisms of NO genotoxic-ity: implication of inhibition of DNA repair proteins. Rev Physiol Biochem Pharmacol 131, 175–191.

    CAS  PubMed  Google Scholar 

  263. Graziewicz, M., Wink, D.A., and Laval, F. (1996) Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 17, 2501–2505.

    Article  CAS  PubMed  Google Scholar 

  264. Jaiswal, M., LaRusso, N.F., Nishioka, N., Nakabeppu, Y., and Gores, G.J. (2001) Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61, 6388–6393.

    CAS  PubMed  Google Scholar 

  265. Laval, F. and Wink, D.A. (1994) Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis 15, 443–447.

    Article  CAS  PubMed  Google Scholar 

  266. Liu, L., Xu-Welliver, M., Kanugula, S., and Pegg, A.E. (2002) Inactivation and degradation of O(6)-alkylguanine-DNA alkyl-transferase after reaction with nitric oxide. Cancer Res 62, 3037–3043.

    CAS  PubMed  Google Scholar 

  267. Wink, D.A. and Laval, J. (1994) The Fpg protein, a DNA repair enzyme, is inhibited by the biomediator nitric oxide in vitro and in vivo. Carcinogenesis 15, 2125–2129.

    Article  CAS  PubMed  Google Scholar 

  268. Wink, D.A., Vodovotz, Y., Laval, J., Laval, F., Dewhirst, M.W., and Mitchell, J.B. (1998) The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19, 711–721.

    Article  CAS  PubMed  Google Scholar 

  269. Starke, D.W., Chen, Y., Bapna, C.P., Les-nefsky, E.J., and Mieyal, J.J. (1997) Sensitivity of protein sulfhydryl repair enzymes to oxidative stress. Free Radic Biol Med 23, 373–384.

    Article  CAS  PubMed  Google Scholar 

  270. Morita, E.H., Ohkubo, T., Kuraoka, I., Shirakawa, M., Tanaka, K., and Morikawa, K. (1996) Implications of the zinc-finger motif found in the DNA-binding domain of the human XPA protein. Genes Cells 1, 437–442.

    Article  CAS  PubMed  Google Scholar 

  271. Lindahl, T. and Barnes, D.E. (1992) Mammalian DNA ligases. Annu Rev Biochem 61, 251–281.

    Article  CAS  PubMed  Google Scholar 

  272. Roldan-Arjona, T., Wei, Y.F., Carter, K.C., Klungland, A., Anselmino, C., Wang, R.P., Augustus, M., and Lindahl, T. (1997) Molecular cloning and functional expression of a human cDNA encoding the anti-mutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci U S A 94, 8016–8020.

    Article  CAS  PubMed  Google Scholar 

  273. Tani, M., Shinmura, K., Kohno, T., Shiroi-shi, T., Wakana, S., Kim, S.R., Nohmi, T., Kasai, H., Takenoshita, S., Nagamachi, Y., and Yokota, J. (1998) Genomic structure and chromosomal localization of the mouse Ogg1 gene that is involved in the repair of 8-hydroxyguanine in DNA damage. Mamm Genome 9, 32–37.

    Article  CAS  PubMed  Google Scholar 

  274. Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., and Barnes, D.E. (1999) Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A 96, 13300–13305.

    Article  CAS  PubMed  Google Scholar 

  275. Rosenquist, T.A., Zharkov, D.O., and Groll-man, A.P. (1997) Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A 94, 7429–7434.

    Article  CAS  PubMed  Google Scholar 

  276. Yamamoto, F., Kasai, H., Bessho, T., Chung, M.H., Inoue, H., Ohtsuka, E., Hori, T., and Nishimura, S. (1992) Ubiquitous presence in mammalian cells of enzymatic activity specifically cleaving 8-hydroxyguanine-contain-ing DNA. Jpn J Cancer Res 83, 351–357.

    CAS  PubMed  Google Scholar 

  277. Yamaguchi, S., Bell, H.S., Shinoda, J., Holmes, M.C., Wharton, S.B., and Whittle, I.R. (2002) Glioma tumourgeniCity is decreased by iNOS knockout: experimental studies using the C6 striatal implantation glioma model. Br J Neurosurg 16, 567–572.

    CAS  PubMed  Google Scholar 

  278. Barreiro Arcos, M.L., Gorelik, G., Klecha, A., Goren, N., Cerquetti, C., and Cremaschi, G.A. (2003) Inducible nitric oxide synthase-me-diated proliferation of a T lymphoma cell line. Nitric Oxide 8, 111–118.

    Article  PubMed  CAS  Google Scholar 

  279. Shang, Z.J., Li, Z.B., and Li, J.R. (2006) In vitro effects of nitric oxide synthase inhibitor L-NAME on oral squamous cell carcinoma: a preliminary study. Int J Oral Maxillofac Surg 35, 539–543.

    Article  PubMed  Google Scholar 

  280. Stallmeyer, B., Anhold, M., Wetzler, C., Kahl-ina, K., Pfeilschifter, J., and Frank, S. (2002) Regulation of eNOS in normal and diabetes-impaired skin repair: implications for tissue regeneration. Nitric Oxide 6, 168–177.

    Article  CAS  PubMed  Google Scholar 

  281. Tong, X. and Li, H. (2004) eNOS protects prostate cancer cells from TRAIL-induced apoptosis. Cancer Lett 210, 63–71.

    Article  CAS  PubMed  Google Scholar 

  282. Wartenberg, M., Schallenberg, M., Hescheler, J., and Sauer, H. (2003) Reactive oxygen species-mediated regulation of eNOS and iNOS expression in multicellular prostate tumor spheroids. Int J Cancer 104, 274–282.

    Article  CAS  PubMed  Google Scholar 

  283. Murphy, P.R., Limoges, M., Dodd, F., Boudreau, R.T., and Too, C.K. (2001) Fibroblast growth factor-2 stimulates endothelial nitric oxide synthase expression and inhibits apoptosis by a nitric oxide-dependent pathway in Nb2 lymphoma cells. Endocrinology 142, 81–88.

    Article  CAS  PubMed  Google Scholar 

  284. Weller, R., Schwentker, A., Billiar, T.R., and Vodovotz, Y. (2003) Autologous nitric oxide protects mouse and human keratino-cytes from ultraviolet B radiation-induced apoptosis. Am J Physiol Cell Physiol 284, C1140–C1148.

    CAS  PubMed  Google Scholar 

  285. Dodd, F., Limoges, M., Boudreau, R.T., Rowden, G., Murphy, P.R., and Too, C.K. (2000) L-Arginine inhibits apoptosis via a NO-dependent mechanism in Nb2 lym-phoma cells. J Cell Biochem 77, 624–634.

    Article  CAS  PubMed  Google Scholar 

  286. Mortensen, K., Skouv, J., Hougaard, D.M., and Larsson, L.I. (1999) Endogenous endothelial cell nitric-oxide synthase modulates apoptosis in cultured breast cancer cells and is transcriptionally regulated by p53. J Biol Chem 274, 37679–37684.

    Article  CAS  PubMed  Google Scholar 

  287. Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature 407, 770–776.

    Article  CAS  PubMed  Google Scholar 

  288. Suzuki, H. and Ishii, H. (2000) Role of apoptosis in Helicobacter pylori- associated gastric mucosal injury. J Gastroenterol Hepa-tol 15 Suppl, D46–D54.

    Article  CAS  Google Scholar 

  289. Le, X., Wei, D., Huang, S., Lancaster, J.R., Jr., and Xie, K. (2005) Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. Proc Natl Acad Sci U S A 102, 8758–8763.

    Article  CAS  PubMed  Google Scholar 

  290. Xie, K. and Huang, S. (2003) Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic Biol Med 34, 969–986.

    Article  CAS  PubMed  Google Scholar 

  291. Kim, Y.M., Bombeck, C.A., and Billiar, T.R. (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84, 253–256.

    CAS  PubMed  Google Scholar 

  292. Kim, Y.M., Kim, T.H., Chung, H.T., Talanian, R.V., Yin, X.M., and Billiar, T.R. (2000) Nitric oxide prevents tumor necrosis factor alpha-induced rat hepatocyte apop-tosis by the interruption of mitochondrial apoptotic signaling through S-nitrosylation of caspase-8. Hepatology 32, 770–778.

    Article  CAS  PubMed  Google Scholar 

  293. Ceneviva, G.D., Tzeng, E., Hoyt, D.G., Yee, E., Gallagher, A., Engelhardt, J.F., Kim, Y.M., Billiar, T.R., Watkins, S.A., and Pitt, B.R. (1998) Nitric oxide inhibits lipopolysaccha-ride-induced apoptosis in pulmonary artery endothelial cells. Am J Physiol 275, L717–L728.

    CAS  PubMed  Google Scholar 

  294. Kim, Y.M., de Vera, M.E., Watkins, S.C., and Billiar, T.R. (1997) Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-alpha-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem 272, 1402–1411.

    Article  CAS  PubMed  Google Scholar 

  295. Brune, B., von Knethen, A., and Sandau, K.B. (1999) Nitric oxide (NO): an effector of apoptosis. Cell Death Differ 6, 969–975.

    Article  CAS  PubMed  Google Scholar 

  296. Madesh, M., Ramachandran, A., and Balas-ubramanian, K.A. (1999) Nitric oxide prevents anoxia-induced apoptosis in colonic HT29 cells. Arch Biochem Biophys 366, 240–248.

    Article  CAS  PubMed  Google Scholar 

  297. Calmels, S., Hainaut, P., and Ohshima, H. (1997) Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res 57, 3365–3369.

    CAS  PubMed  Google Scholar 

  298. Chazotte-Aubert, L., Hainaut, P., and Ohshima, H. (2000) Nitric oxide nitrates tyrosine residues of tumor-suppressor p53 protein in MCF-7 cells. Biochem Biophys Res Commun 267, 609–613.

    Article  CAS  PubMed  Google Scholar 

  299. Cobbs, C.S., Whisenhunt, T.R., Wese-mann, D.R., Harkins, L.E., Van Meir, E.G., and Samanta, M. (2003) Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res 63, 8670–8673.

    CAS  PubMed  Google Scholar 

  300. Fukunaga-Takenaka, R., Fukunaga, K., Tatemichi, M., and Ohshima, H. (2003) Nitric oxide prevents UV-induced phospho-rylation of the p53 tumor-suppressor protein at serine 46: a possible role in inhibition of apoptosis. Biochem Biophys Res Commun 308, 966–974.

    Article  CAS  PubMed  Google Scholar 

  301. Forrester, K., Ambs, S., Lupold, S.E., Kapust, R.B., Spillare, E.A., Weinberg, W.C., Felley-Bosco, E., Wang, X.W., Geller, D.A., Tzeng, E., Billiar, T.R., and Harris, C.C. (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A 93, 2442–2447.

    Article  CAS  PubMed  Google Scholar 

  302. Folkman, J. (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27–31.

    Article  CAS  PubMed  Google Scholar 

  303. Gallo, O., Masini, E., Morbidelli, L., Franchi, A., Fini-Storchi, I., Vergari, W.A., and Ziche, M. (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90, 587–596.

    Article  CAS  PubMed  Google Scholar 

  304. Ziche, M., Morbidelli, L., Masini, E., Amerini, S., Granger, H.J., Maggi, C.A., Geppetti, P., and Ledda, F. (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94, 2036–2044.

    Article  CAS  PubMed  Google Scholar 

  305. Gratton, J.P., Lin, M.I., Yu, J., Weiss, E.D., Jiang, Z.L., Fairchild, T.A., Iwakiri, Y., Groszmann, R., Claffey, K.P., Cheng, Y.C., and Sessa, W.C. (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4, 31–39.

    Article  CAS  PubMed  Google Scholar 

  306. Jadeski, L.C. and Lala, P.K. (1999) Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol155, 1381–1390.

    Article  CAS  PubMed  Google Scholar 

  307. Kashiwagi, S., Izumi, Y., Gohongi, T., Demou, Z.N., Xu, L., Huang, P.L., Buerk, D.G., Munn, L.L., Jain, R.K., and Fukumura, D. (2005) NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Invest115, 1816–1827.

    Article  CAS  PubMed  Google Scholar 

  308. Fukumura, D. and Jain, R.K. (1998) Role of nitric oxide in angiogenesis and microcirculation in tumors. Cancer Metastasis Rev17, 77–89.

    Article  CAS  PubMed  Google Scholar 

  309. Papapetropoulos, A., Garcia-Cardena, G., Madri, J.A., and Sessa, W.C. (1997) Nitric oxide production contributes to the ang-iogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest100, 3131–3139.

    Article  CAS  PubMed  Google Scholar 

  310. Chin, K., Kurashima, Y., Ogura, T., Tajiri, H., Yoshida, S., and Esumi, H. (1997) Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene15, 437–442.

    Article  CAS  PubMed  Google Scholar 

  311. Morbidelli, L., Chang, C.H., Douglas, J.G., Granger, H.J., Ledda, F., and Ziche, M. (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothe-lium. Am J Physiol270, H411–H415.

    CAS  PubMed  Google Scholar 

  312. Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H.T., Donnini, S., Granger, H.J., and Bicknell, R. (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest99, 2625–2634.

    Article  CAS  PubMed  Google Scholar 

  313. Kasuno, K., Takabuchi, S., Fukuda, K., Kizaka-Kondoh, S., Yodoi, J., Adachi, T., Semenza, G.L., and Hirota, K. (2004) Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem279, 2550–2558.

    Article  CAS  PubMed  Google Scholar 

  314. Kimura, H., Weisz, A., Kurashima, Y., Hashimoto, K., Ogura, T., D'Acquisto, F., Addeo, R., Makuuchi, M., and Esumi, H. (2000) Hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood95, 189–197.

    CAS  PubMed  Google Scholar 

  315. Sandau, K.B., Zhou, J., Kietzmann, T., and Brune, B. (2001) Regulation of the hypoxia-inducible factor 1alpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem276, 39805–39811.

    Article  CAS  PubMed  Google Scholar 

  316. Metzen, E., Zhou, J., Jelkmann, W., Fan-drey, J., and Brune, B. (2003) Nitric oxide impairs normoxic degradation of HIF-1al-pha by inhibition of prolyl hydroxylases. Mol Biol Cell14, 3470–3481.

    Article  CAS  PubMed  Google Scholar 

  317. Genius, J. and Fandrey, J. (2000) Nitric oxide affects the production of reactive oxygen species in hepatoma cells: implications for the process of oxygen sensing. Free Radic Biol Med29, 515–521.

    Article  CAS  PubMed  Google Scholar 

  318. Thomas, D.D., Espey, M.G., Ridnour, L.A., Hofseth, L.J., Mancardi, D., Harris, C.C., and Wink, D.A. (2004) Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci U S A101, 8894–8899.

    Article  CAS  PubMed  Google Scholar 

  319. Huang, L.E., Willmore, W.G., Gu, J., Goldberg, M.A., and Bunn, H.F. (1999) Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide. Implications for oxygen sensing and signaling. J Biol Chem274, 9038–9044.

    Article  CAS  PubMed  Google Scholar 

  320. Liu, Y., Christou, H., Morita, T., Laughner, E., Semenza, G.L., and Kourembanas, S. (1998) Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothe-lial growth factor gene via the 5′ enhancer. J Biol Chem273, 15257–15262.

    Article  CAS  PubMed  Google Scholar 

  321. Sogawa, K., Numayama-Tsuruta, K., Ema, M., Abe, M., Abe, H., and Fujii-Kuriyama, Y. (1998) Inhibition of hypoxia-inducible factor 1 activity by nitric oxide donors in hypoxia. Proc Natl Acad Sci U S A95, 7368–7373.

    Article  CAS  PubMed  Google Scholar 

  322. Quintero, M., Brennan, P.A., Thomas, G.J., and Moncada, S. (2006) Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1alpha in cancer: role of free radical formation. Cancer Res66, 770–774.

    Article  CAS  PubMed  Google Scholar 

  323. Pae, H.O., Oh, G.S., Choi, B.M., Kim, Y.M., and Chung, H.T. (2005) A molecular cascade showing nitric oxide-heme oxygen-ase-1-vascular endothelial growth factor-in-terleukin-8 sequence in human endothelial cells. Endocrinology146, 2229–2238.

    Article  CAS  PubMed  Google Scholar 

  324. Ziche, M., Parenti, A., Ledda, F., Dell'Era, P., Granger, H.J., Maggi, C.A., and Presta, M. (1997) Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res80, 845–852.

    CAS  PubMed  Google Scholar 

  325. Sawaoka, H., Tsuji, S., Tsujii, M., Guna-wan, E.S., Nakama, A., Takei, Y., Nagano, K., Matsui, H., Kawano, S., and Hori, M. (1997) Expression of the cyclooxygenase-2 gene in gastric epithelium. J Clin Gastroen-terol25 Suppl 1, S105–S110.

    Article  Google Scholar 

  326. Tsujii, M. and DuBois, R.N. (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell83, 493–501.

    Article  CAS  PubMed  Google Scholar 

  327. Namkoong, S., Lee, S.J., Kim, C.K., Kim, Y.M., Chung, H.T., Lee, H., Han, J.A., Ha, K.S., Kwon, Y.G., and Kim, Y.M. (2005) Prostag-landin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med37, 588–600.

    CAS  PubMed  Google Scholar 

  328. Ridnour, L.A., Isenberg, J.S., Espey, M.G., Thomas, D.D., Roberts, D.D., and Wink, D.A. (2005) Nitric oxide regulates angiogen-esis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci U S A102, 13147–13152.

    Article  CAS  PubMed  Google Scholar 

  329. Matsunaga, T., Weihrauch, D.W., Moniz, M.C., Tessmer, J., Warltier, D.C., and Chilian, W.M. (2002) Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation105, 2185–2191.

    Article  CAS  PubMed  Google Scholar 

  330. Babaei, S., Teichert-Kuliszewska, K., Zhang, Q., Jones, N., Dumont, D.J., and Stewart, D.J. (2003) Angiogenic actions of angiopoi-etin-1 require endothelium-derived nitric oxide. Am J Pathol162, 1927–1936.

    Article  CAS  PubMed  Google Scholar 

  331. Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J., Yun, C.O., Buerk, D.G., Huang, P.L., and Jain, R.K. (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A98, 2604–2609.

    Article  CAS  PubMed  Google Scholar 

  332. Duda, D.G., Fukumura, D., and Jain, R.K. (2004) Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med10, 143–145.

    Article  CAS  PubMed  Google Scholar 

  333. Sonveaux, P., Brouet, A., Havaux, X., Gre-goire, V., Dessy, C., Balligand, J.L., and Feron, O. (2003) Irradiation-induced angiogenesis through the up-regulation of thenitric oxide pathway: implications for tumor radiotherapy. Cancer Res63, 1012–1019.

    CAS  PubMed  Google Scholar 

  334. Seril, D.N., Liao, J., Yang, C.S., and Yang, G.Y. (2005) Systemic iron supplementation replenishes iron stores without enhancing colon carcinogenesis in murine models of ulcerative colitis: comparison with iron-en riched diet. Dig Dis Sci50, 696–707.

    Article  CAS  PubMed  Google Scholar 

  335. Urbich, C., Reissner, A., Chavakis, E., Dern-bach, E., Haendeler, J., Fleming, I., Zei-her, A.M., Kaszkin, M., and Dimmeler, S. (2002) Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J16, 706–708.

    CAS  PubMed  Google Scholar 

  336. Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., Zeiher, A.M., and Dimmeler, S. (2003) Essential role of endothelial nitric oxide syn-thase for mobilization of stem and progenitor cells. Nat Med9, 1370–1376.

    Article  CAS  PubMed  Google Scholar 

  337. De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of peri-cyte progenitors. Cancer Cell8, 211–226.

    Article  CAS  PubMed  Google Scholar 

  338. Duda, D.G., Cohen, K.S., Kozin, S.V., Per-entes, J.Y., Fukumura, D., Scadden, D.T., and Jain, R.K. (2006) Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood107, 2774–2776.

    Article  CAS  PubMed  Google Scholar 

  339. Gu, Z., Kaul, M., Yan, B., Kridel, S.J., Cui, J., Strongin, A., Smith, J.W., Liddington, R.C., and Lipton, S.A. (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science297, 1186–1190.

    Article  CAS  PubMed  Google Scholar 

  340. Marcet-Palacios, M., Graham, K., Cass, C., Befus, A.D., Mayers, I., and Radomski, M.W. (2003) Nitric oxide and cyclic GMP increase the expression of matrix metallo-proteinase-9 in vascular smooth muscle. J Pharmacol Exp Ther307, 429–436.

    Article  CAS  PubMed  Google Scholar 

  341. Peters, B.A., Diaz, L.A., Polyak, K., Meszler, L., Romans, K., Guinan, E.C., Antin, J.H., Myerson, D., Hamilton, S.R., Vogelstein, B., Kinzler, K.W., and Lengauer, C. (2005) Contribution of bone marrow-derived endothelial cells to human tumor vascula-ture. Nat Med11, 261–262.

    Article  CAS  PubMed  Google Scholar 

  342. Rafii, S., Lyden, D., Benezra, R., Hattori, K., and Heissig, B. (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer2, 826–835.

    Article  CAS  PubMed  Google Scholar 

  343. Yu, J., deMuinck, E.D., Zhuang, Z., Drinane, M., Kauser, K., Rubanyi, G.M., Qian, H.S., Murata, T., Escalante, B., and Sessa, W.C. (2005) Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A102, 10999–11004.

    Article  CAS  PubMed  Google Scholar 

  344. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J.S., and Jain, R.K. (2004) Tissue engineering: creation of long-lasting blood vessels. Nature428, 138–139.

    Article  CAS  PubMed  Google Scholar 

  345. Jain, R.K. (2003) Molecular regulation of vessel maturation. Nat Med9, 685–693.

    Article  CAS  PubMed  Google Scholar 

  346. Jain, R.K. (2005) Normalization of tumor vasculature: an emerging concept in antian-giogenic therapy. Science307, 58–62.

    Article  CAS  PubMed  Google Scholar 

  347. Andrade, S.P., Hart, I.R., and Piper, P.J. (1992) Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovas-culature. Br J Pharmacol107, 1092–1095.

    CAS  PubMed  Google Scholar 

  348. Fukumura, D., Yuan, F., Endo, M., and Jain, R.K. (1997) Role of nitric oxide in tumor microcirculation. Blood flow, vascular permeability, and leukocyte-endothelial interactions. Am J Pathol150, 713–725.

    CAS  PubMed  Google Scholar 

  349. Swaroop, G.R., Malcolm, G.P., Kelly, P.A., Ritchie, I., and Whittle, I.R. (1998) Effects of nitric oxide modulation on tumour blood flow and microvascular permeability in C6 glioma. Neuroreport9, 2577–2581.

    Article  CAS  PubMed  Google Scholar 

  350. Tozer, G.M., Prise, V.E., and Chaplin, D.J. (1997) Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res57, 948–955.

    CAS  PubMed  Google Scholar 

  351. Kubes, P. (1995) Nitric oxide affects microvas-cular permeability in the intact and inflamed vasculature. Microcirculation2, 235–244.

    Article  CAS  PubMed  Google Scholar 

  352. Aramoto, H., Breslin, J.W., Pappas, P.J., Hobson, R.W., II, and Duran, W.N. (2004) Vascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation. Am J Physiol Heart Circ Physiol287, H1590–H1598.

    Article  CAS  PubMed  Google Scholar 

  353. Mayhan, W.G. (1999) VEGF increases permeability of the blood–brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol276, C1148–C1153.

    CAS  PubMed  Google Scholar 

  354. Bucci, M., Gratton, J.P., Rudic, R.D., Acevedo, L., Roviezzo, F., Cirino, G., and Sessa, W.C. (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med6, 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  355. Maeda, H., Noguchi, Y., Sato, K., and Akaike, T. (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res85, 331–334.

    CAS  PubMed  Google Scholar 

  356. Boughton-Smith, N.K., Evans, S.M., Las-zlo, F., Whittle, B.J., and Moncada, S. (1993) The induction of nitric oxide syn-thase and intestinal vascular permeability by endotoxin in the rat. Br J Pharmacol110, 1189–1195.

    CAS  PubMed  Google Scholar 

  357. Fujii, E., Irie, K., Uchida, Y., Tsukahara, F., and Muraki, T. (1994) Possible role of nitric oxide in 5-hydroxytryptamine-induced increase in vascular permeability in mouse skin. Naunyn Schmiedebergs Arch Pharmacol350, 361–364.

    Article  CAS  PubMed  Google Scholar 

  358. Nakano, S., Matsukado, K., and Black, K.L. (1996) Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res56, 4027–4031.

    CAS  PubMed  Google Scholar 

  359. Orucevic, A. and Lala, P.K. (1996) NG-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces 349. tumour growth in adenocarcinoma-bearing mice. Br J Cancer73, 189–196.

    Article  CAS  PubMed  Google Scholar 

  360. Ramirez, M.M., Quardt, S.M., Kim, D., Oshiro, H., Minnicozzi, M., and Duran, W.N. (1995) Platelet activating factor modulates microvascular permeability through nitric oxide synthesis. Microvasc Res50, 223–234.

    Article  CAS  PubMed  Google Scholar 

  361. Zhang, X.M. and Xu, Q. (2001) Metastatic melanoma cells escape from immunosur-veillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res11, 559–567.

    Article  CAS  PubMed  Google Scholar 

  362. Edwards, P., Cendan, J.C., Topping, D.B., Moldawer, L.L., MacKay, S., Copeland, E., and Lind, D.S. (1996) Tumor cell nitric oxide inhibits cell growth in vitro, but stimulates tumorigenesis and experimental lung metastasis in vivo. J Surg Res63, 49–52.

    Article  CAS  PubMed  Google Scholar 

  363. Iwasaki, T., Higashiyama, M., Kuriyama, K., Sasaki, A., Mukai, M., Shinkai, K., Horai, T., Matsuda, H., and Akedo, H. (1997) NG-nitro-L-arginine methyl ester inhibits bone metastasis after modified intracardiac injection of human breast cancer cells in a nude mouse model. Jpn J Cancer Res88, 861–866.

    CAS  PubMed  Google Scholar 

  364. Jadeski, L.C., Chakraborty, C., and Lala, P.K. (2003) Nitric oxide-mediated promotion of mammary tumour cell migration requires sequential activation of nitric oxide synthase, guanylate cyclase and mitogen-activated protein kinase. Int J Cancer106, 496–504.

    Article  CAS  PubMed  Google Scholar 

  365. Orucevic, A., Bechberger, J., Green, A.M., Shapiro, R.A., Billiar, T.R., and Lala, P.K. (1999) Nitric-oxide production by murine mammary adenocarcinoma cells promotes tumor-cell invasiveness. Int J Cancer81, 889–896.

    Article  CAS  PubMed  Google Scholar 

  366. Siegert, A., Rosenberg, C., Schmitt, W.D., Denkert, C., and Hauptmann, S. (2002) Nitric oxide of human colorectal adenocar-cinoma cell lines promotes tumour cell invasion. Br J Cancer86, 1310–1315.

    Article  CAS  PubMed  Google Scholar 

  367. Gauthier, N., Lohm, S., Touzery, C., Chantome, A., Perette, B., Reveneau, S., Brunotte, F., Juillerat-Jeanneret, L., and Jeannin, J.F. (2004) Tumour-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs. Carcinogenesis25, 1559–1565.

    Article  CAS  PubMed  Google Scholar 

  368. Wang, B., Wei, D., Crum, V.E., Richardson, E.L., Xiong, H.H., Luo, Y., Huang, S., Abbruzzese, J.L., and Xie, K. (2003) A novel model system for studying the double-edged roles of nitric oxide production in pancreatic cancer growth and metastasis. Oncogene22, 1771–1782.

    Article  CAS  PubMed  Google Scholar 

  369. Wang, L., Shi, G.G., Yao, J.C., Gong, W., Wei, D., Wu, T.T., Ajani, J.A., Huang, S., and Xie, K. (2005) Expression of endothe-lial nitric oxide synthase correlates with the angiogenic phenotype of and predicts poor prognosis in human gastric cancer. Gastric Cancer8, 18–28.

    Article  CAS  PubMed  Google Scholar 

  370. Ariel, I., Hochberg, A., and Shochina, M. (1998) Endothelial nitric oxide synthase immunoreactivity in early gestation and in trophoblastic disease. J Clin Pathol51, 427–431.

    Article  CAS  PubMed  Google Scholar 

  371. Jadeski, L.C., Hum, K.O., Chakraborty, C., and Lala, P.K. (2000) Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int J Cancer86, 30–39.

    Article  CAS  PubMed  Google Scholar 

  372. Fukumura, D., Yonei, Y., Kurose, I., Saito, H., Ohishi, T., Higuchi, H., Miura, S., Kato, S., Kimura, H., Ebinuma, H., and Ishi, H. (1996) Role in nitric oxide in Kupffer cell-mediated hepatoma cell cytotoxiCity in vitro and ex vivo. Hepatology24, 141–149.

    CAS  PubMed  Google Scholar 

  373. Qiu, H., Orr, F.W., Jensen, D., Wang, H.H., McIntosh, A.R., Hasinoff, B.B., Nance, D.M., Pylypas, S., Qi, K., Song, C., Muschel, R.J., and Al-Mehdi, A.B. (2003) Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol162, 403–412.

    Article  CAS  PubMed  Google Scholar 

  374. Wang, H.H., McIntosh, A.R., Hasinoff, B.B., Rector, E.S., Ahmed, N., Nance, D.M., and Orr, F.W. (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxiCity: a natural hepatic defense against metastasis. Cancer Res60, 5862–5869.

    CAS  PubMed  Google Scholar 

  375. Yamamoto, T., Terada, N., Seiyama, A., Nishizawa, Y., Akedo, H., and Kosaka, H. (1998) Increase in experimental pulmonary metastasis in mice by L-arginine under inhibition of nitric oxide production by NG-ni-tro-L-arginine methyl ester. Int J Cancer75, 140–144.

    Article  CAS  PubMed  Google Scholar 

  376. Wei, D., Richardson, E.L., Zhu, K., Wang, L., Le, X., He, Y., Huang, S., and Xie, K. (2003) Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res63, 3855–3859.

    CAS  PubMed  Google Scholar 

  377. Gasic, G.J., Gasic, T.B., and Stewart, C.C. (1968) Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A61, 46–52.369.

    Article  CAS  PubMed  Google Scholar 

  378. Kisucka, J., Butterfield, C.E., Duda, D.G., Eichenberger, S.C., Saffaripour, S., Ware, J., Ruggeri, Z.M., Jain, R.K., Folkman, J., and Wagner, D.D. (2006) Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A103, 855–860.

    Article  CAS  PubMed  Google Scholar 

  379. Im, J.H., Fu, W., Wang, H., Bhatia, S.K., Hammer, D.A., Kowalska, M.A., and Muschel, R.J. (2004) Coagulation facilitates tumor cell spreading in the pulmonary vas-culature during early metastatic colony formation. Cancer Res64, 8613–8619.

    Article  CAS  PubMed  Google Scholar 

  380. Mehta, P. (1984) Potential role of platelets in the pathogenesis of tumor metastasis. Blood63, 55–63.

    CAS  PubMed  Google Scholar 

  381. Radomski, M.W., Jenkins, D.C., Holmes, L., and Moncada, S. (1991) Human colorec-tal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res51, 6073–6078.

    CAS  PubMed  Google Scholar 

  382. Radomski, M.W., Palmer, R.M., and Mon-cada, S. (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A87, 5193–5197.

    Article  CAS  PubMed  Google Scholar 

  383. Fukumura, D., Salehi, H.A., Witwer, B., Tuma, R.F., Melder, R.J., and Jain, R.K. (1995) Tumor necrosis factor alpha-induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site, and host strain. Cancer Res55, 4824–4829.

    CAS  PubMed  Google Scholar 

  384. Davenpeck, K.L., Gauthier, T.W., and Lefer, A.M. (1994) Inhibition of endothe-lial-derived nitric oxide promotes P-selectin expression and actions in the rat microcircu-lation. Gastroenterology107, 1050–1058.

    CAS  PubMed  Google Scholar 

  385. Kubes, P., Suzuki, M., and Granger, D.N. (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A88, 4651–4655.

    Article  CAS  PubMed  Google Scholar 

  386. Lefer, D.J., Jones, S.P., Girod, W.G., Baines, A., Grisham, M.B., Cockrell, A.S., Huang, P.L., and Scalia, R. (1999) Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol276, H1943–H1950.

    CAS  PubMed  Google Scholar 

  387. Tozer, G.M., Prise, V.E., Motterlini, R., Poole, B.A., Wilson, J., and Chaplin, D.J. (1998) The comparative effects of the NOS inhibitor, N-nitro-L-arginine, and the haemoxygenase inhibitor, zinc protoporphy-rin IX, on tumour blood flow. Int J Radiat Oncol Biol Phys42, 849–853.

    Article  CAS  PubMed  Google Scholar 

  388. Schleiffer, R., Duranton, B., Gosse, F., Berg-mann, C., and Raul, F. (2000) Nitric oxide synthase inhibition promotes carcinogen-induced preneoplastic changes in the colon of rats. Nitric Oxide4, 583–589.

    Article  CAS  PubMed  Google Scholar 

  389. Garvey, E.P., Oplinger, J.A., Tanoury, G.J., Sherman, P.A., Fowler, M., Marshall, S., Harmon, M.F., Paith, J.E., and Furfine, E.S. (1994) Potent and selective inhibition of human nitric oxide synthases. Inhibition by non-amino acid isothioureas. J Biol Chem269, 26669–26676.

    CAS  PubMed  Google Scholar 

  390. Garvey, E.P., Oplinger, J.A., Furfine, E.S., Kiff, R.J., Laszlo, F., Whittle, B.J., and Knowles, R.G. (1997) 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem272, 4959–4963.

    Article  CAS  PubMed  Google Scholar 

  391. Alderton, W.K., Cooper, C.E., and Know-les, R.G. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J357, 593–615.

    Article  CAS  PubMed  Google Scholar 

  392. Rao, C.V., Indranie, C., Simi, B., Manning, P.T., Connor, J.R., and Reddy, B.S. (2002) Che-mopreventive properties of a selective induc-ible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxy-genase-2 inhibitor. Cancer Res62, 165–170.

    CAS  PubMed  Google Scholar 

  393. Szabo, C., Ferrer-Sueta, G., Zingarelli, B., Southan, G.J., Salzman, A.L., and Radi, R. (1997) Mercaptoethylguanidine and guani-dine inhibitors of nitric-oxide synthase react with peroxynitrite and protect against per-oxynitrite-induced oxidative damage. J Biol Chem272, 9030–9036.

    Article  CAS  PubMed  Google Scholar 

  394. Florio, T., Morini, M., Villa, V., Arena, S., Corsaro, A., Thellung, S., Culler, M.D., Pfeffer, U., Noonan, D.M., Schettini, G., and Albini, A. (2003) Somatostatin inhibits tumor angiogenesis and growth via soma-tostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology144, 1574–1584.

    Article  CAS  PubMed  Google Scholar 

  395. Jaiswal, M., LaRusso, N.F., and Gores, G.J. (2001) Nitric oxide in gastrointestinal epithelial cell carcinogenesis: linking inflammation to oncogenesis. Am J Physiol Gastrointest Liver Physiol281, G626–G634.

    CAS  PubMed  Google Scholar 

  396. Hobbs, A.J., Higgs, A., and Moncada, S. (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol39, 191–220.

    Article  CAS  PubMed  Google Scholar 

  397. Muscara, M.N. and Wallace, J.L. (1999) Nitric Oxide. V. therapeutic potential of nitric oxide donors and inhibitors. Am J Physiol276, G1313–G1316.

    CAS  PubMed  Google Scholar 

  398. Matthews, N.E., Adams, M.A., Maxwell, L.R., Gofton, T.E., and Graham, C.H. (2001) Nitric oxide-mediated regulation of chemo-sensitivity in cancer cells. J Natl Cancer Inst93, 1879–1885.

    Article  CAS  PubMed  Google Scholar 

  399. Soler, M.N., Bobe, P., Benihoud, K., Lemaire, G., Roos, B.A., and Lausson, S. (2000) Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J Gene Med2, 344–352.

    Article  CAS  PubMed  Google Scholar 

  400. Cook, T., Wang, Z., Alber, S., Liu, K., Watkins, S.C., Vodovotz, Y., Billiar, T.R., and Blumberg, D. (2004) Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res64, 8015–8021.

    Article  CAS  PubMed  Google Scholar 

  401. Mitchell, J.B., Wink, D.A., DeGraff, W., Gamson, J., Keefer, L.K., and Krishna, M.C. (1993) Hypoxic mammalian cell radiosen-sitization by nitric oxide. Cancer Res53, 5845–5848.

    CAS  PubMed  Google Scholar 

  402. Kundu, N., Dorsey, R., Jackson, M.J., Gui-terrez, P., Wilson, K., Fu, S., Ramanujam, K., Thomas, E., and Fulton, A.M. (1998) Interleukin-10 gene transfer inhibits murine mammary tumors and elevates nitric oxide. Int J Cancer76, 713–719.

    Article  CAS  PubMed  Google Scholar 

  403. Ying, L. and Hofseth, L.J. (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res67, 1407–1410.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by NIH 1R01CA104741 grant, Crohn's & Colitis Foundation of America Senior Award, and the Sam Zell Scholar Fund.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yang, GY., Taboada, S., Liao, J. (2009). Induced Nitric Oxide Synthase as a Major Player in the Oncogenic Transformation of Inflamed Tissue. In: Kozlov, S.V. (eds) Inflammation and Cancer. Methods in Molecular Biology™, vol 512. Humana Press. https://doi.org/10.1007/978-1-60327-530-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-530-9_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-529-3

  • Online ISBN: 978-1-60327-530-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics