Advertisement

Analysis of the TLR/NF-κB Pathway in Antigen-Presenting Cells in Malignancies Promoted by Inflammation

  • J. Magarian Blander
Part of the Methods in Molecular Biology™ book series (MIMB, volume 512)

Summary

Activation of the transcription factor, nuclear factor of κB (NF-κB), has recently emerged as the critical link between inflammation and cancer. NF-κB is activated by many signals including DNA damage and microbial pathogen recognition. Although microbial infections account for an estimated 15% of all cancer related deaths, NF-κB is constitutively activated in various types of cancer as a direct result of chromosomal translocations, deletions and mutations affecting both NF-κB and its regulators. NF-κB exerts the transcriptional activation and repression of inflammatory and immune response genes as well as genes mediating cell survival and proliferation, and thus stands to impact various cellular processes. The decision is made through the integration of the pathway of NF-κB activation with a complex array of cell signaling networks that are at present poorly understood. Here, two methods are presented, protein co-immunoprecipitation and subcellular co-localization by immunofluorescence microscopy, to help investigations into the links between NF-κB-induced inflammation and cancer. Understanding the details of these pathways will aid in the development of new diagnostic and therapeutic applications.

Key words

Toll-like receptors Pattern recognition receptors Nuclear factor of κB Signal transduction Inflammation Cancer Co-immunoprecipitation; Immunofluoresence microscopy Sub-cellular co-localization Organelle markers 

References

  1. 1.
    Medzhitov, R. (2007) Recognition of microorganisms and activation of the immune response. Nature 449, 819–826.CrossRefPubMedGoogle Scholar
  2. 2.
    Karin, M., and Greten, F.R. (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749–759.CrossRefPubMedGoogle Scholar
  3. 3.
    Balkwill, F., and Mantovani, A. (2001) Inflammation and cancer: back to Virchow? Lancet 357, 539–545.CrossRefPubMedGoogle Scholar
  4. 4.
    Kuper, H., Adami, H.O., and Trichopoulos, D. (2000) Infections as a major preventable cause of human cancer. J Intern Med 248, 171–183.CrossRefPubMedGoogle Scholar
  5. 5.
    Coussens, L.M., and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860–867.CrossRefPubMedGoogle Scholar
  6. 6.
    Karin, M., Cao, Y., Greten, F.R., and Li, Z.W. (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2, 301–310.CrossRefPubMedGoogle Scholar
  7. 7.
    Hayden, M.S., and Ghosh, S. (2004) Signaling to NF-kappaB. Genes Dev 18, 2195–2224.CrossRefPubMedGoogle Scholar
  8. 8.
    Janssens, S., and Tschopp, J. (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13, 773–784.CrossRefPubMedGoogle Scholar
  9. 9.
    Karin, M., and Ben-Neriah, Y. (2000) Phos-phorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18, 621–663.CrossRefPubMedGoogle Scholar
  10. 10.
    Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjoblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikol-sky, Y., Karchin, R., Wilson, P.A., Kaminker, J.S., Zhang, Z., Croshaw, R., Willis, J., Daw-son, D., Shipitsin, M., Willson, J.K., Sukumar, S., Polyak, K., Park, B.H., Pethiyagoda, C.L., Pant, P.V., Ballinger, D.G., Sparks, A.B., Har-tigan, J., Smith, D.R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S.D., Parmi-giani, G., Kinzler, K.E., Velculescu, V.E., and Vogelstein, B. (2007) The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113.CrossRefPubMedGoogle Scholar
  11. 11.
    Boehm, J.S., Zhao, J.J., Yao, J., Kim, S.Y., Firestein, R., Dunn, I.F., Sjostrom, S.K., Garr-away, L.A., Weremowicz, S., Richardson, A.L., Greulich, H., Stewart, C.J., Mulvey, L.A., Shen, R.R., Ambrogio, L., Hirozane-Kishikawa, T., Hill, D.E., Vidal, M., Meyerson, M., Grenier, J.K., Hinkle, G., Root, D.E., Roberts, T.M., Lander, E.S., Polyak, K., and Hahn, W.C. (2007) Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079.CrossRefPubMedGoogle Scholar
  12. 12.
    Kinzler, K.W., and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.CrossRefPubMedGoogle Scholar
  13. 13.
    Hayden, M.S., West, A.P., and Ghosh, S. (2006) SnapShot: NF-kappaB signaling pathways. Cell 127, 1286–1287.CrossRefPubMedGoogle Scholar
  14. 14.
    Perkins, N.D. (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8, 49–62.CrossRefPubMedGoogle Scholar
  15. 15.
    Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M. (1999) MD-2, a molecule that confers lipopol-ysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189, 1777–1782.CrossRefPubMedGoogle Scholar
  16. 16.
    Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738.CrossRefPubMedGoogle Scholar
  17. 17.
    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., and Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451.CrossRefPubMedGoogle Scholar
  18. 18.
    Takeuchi, O., Kaufmann, A., Grote, K., Kawai, T., Hoshino, K., Morr, M., Muhlradt, P.F., and Akira, S. (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164, 554–557.PubMedGoogle Scholar
  19. 19.
    Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N., and Weis, J.J. (2000) Cutting edge: repurifi-cation of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165, 618–622.PubMedGoogle Scholar
  20. 20.
    Muzio, M., Bosisio, D., Polentarutti, N., D'Amico, G., Stoppacciaro, A., Mancinelli, R., van't Veer, C., Penton-Rol, G., Ruco, L.P., Allavena, P., and Mantovani, A. (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164, 5998–6004.PubMedGoogle Scholar
  21. 21.
    Miyake, K., Yamashita, Y., Ogata, M., Sudo, T., and Kimoto, M. (1995) RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J Immunol 154, 3333–3340.PubMedGoogle Scholar
  22. 22.
    Miyake, K., Shimazu, R., Kondo, J., Niki, T., Akashi, S., Ogata, H., Yamashita, Y., Miura, Y., and Kimoto, M. (1998) Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J Immunol 161, 1348–1353.PubMedGoogle Scholar
  23. 23.
    Rock, F.L. Hardiman, G., Timans, J.C., Kastelein, R.A., and Bazan, J.F. (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95, 588–593.CrossRefPubMedGoogle Scholar
  24. 24.
    Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and innate immunity. Cell 124, 783–801.CrossRefPubMedGoogle Scholar
  25. 25.
    Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M., and Aderem, A. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815.CrossRefPubMedGoogle Scholar
  26. 26.
    Barton, G.M., Kagan, J.C., and Medzhitov, R. (2006) Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7, 49–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Flo, T.H., Halaas, O., Torp, S., Ryan, L., Lien, E., Dybdahl, B., Sundan, A., and Espe-vik, T. (2001) Differential expression of Tolllike receptor 2 in human cells. J Leukoc Biol 69, 474–481.PubMedGoogle Scholar
  28. 28.
    Hausmann, M., Kiessling, S., Mestermann, S., Webb, G., Spottl, T., Andus, T., Scholmerich, J., Herfarth, H., Ray, K., Falk, W., and Rogler, G (2002) Toll-like receptors 2 and 4 are up-regulated during intestinal inflammation. Gastroenterology 122, 1987–2000.CrossRefPubMedGoogle Scholar
  29. 29.
    Li, C., Wang, Y., Gao, L., Zhang, J., Shao, J., Wang, S., Feng, W., Wang, X., Li, M., and Chang, Z. (2002) Expression of toll-like receptors 2 and 4 and CD14 during differentiation of HL-60 cells induced by phorbol 12-myr-istate 13-acetate and 1 alpha, 25-dihydroxy-vitamin D(3). Cell Growth Differ 13, 27–38.PubMedGoogle Scholar
  30. 30.
    Mueller, T., Terada, T., Rosenberg, I.M., Shi-bolet, O., and Podolsky, D.K. (2006) Th2 cytokines down-regulate TLR expression and function in human intestinal epithelial cells. J Immunol 176, 5805–5814.PubMedGoogle Scholar
  31. 31.
    Akashi, S., Shimazu, R., Ogata, H., Nagai, Y., Takeda, K., Kimoto, M., and Miyake, K. (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the tolllike receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164, 3471–3475.PubMedGoogle Scholar
  32. 32.
    Matsumoto, M., Funami, K., Tanabe, A., Oshiumi, H., Shingai, A., Seto, Y., Yamamoto, A., and Seya, T. (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171, 3154–3162.PubMedGoogle Scholar
  33. 33.
    Hoene, V., Peiser, M., and Wanner, R. (2006) Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligo-nucleotide D19. J Leukoc Biol 80, 1328–1336.CrossRefPubMedGoogle Scholar
  34. 34.
    Bergeron, J.J., Brenner, M.B., Thomas, D.Y., and Williams, D.B. (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19, 124–128.CrossRefPubMedGoogle Scholar
  35. 35.
    Molinari, M., Eriksson, K.K., Calanca, V., Galli, C., Cresswell, P. , Michalak, M., and Helenius (2004) Contrasting functions of cal-reticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13, 125–135.CrossRefPubMedGoogle Scholar
  36. 36.
    Muller-Taubenberger, A., Lupas, A.N., Li, H., Ecke, M., Simmeth, E., and Gerisch, G. (2001) Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20, 6772–6782.CrossRefPubMedGoogle Scholar
  37. 37.
    Ortmann, B., Copeman, J., Lehner, P.J., Sada-sivan, B., Herberg, J.A., Grandea, A.G., Rid-dell, S.R., Tampe, R., Spies, T., Trowsdale, J., and Cresswell, P. (1997) A critical role for tapasin in the assembly and function of mul-timeric MHC class I-TAP complexes. Science 277, 1306–1309.CrossRefPubMedGoogle Scholar
  38. 38.
    Hughes, E.A., and Cresswell, P. (1998) The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 8, 709–712.CrossRefPubMedGoogle Scholar
  39. 39.
    Sonnichsen, B., Lowe, M., Levine, T., Jamsa, E., Dirac-Svejstrup, B., and Warren, G. (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140, 1013–1021.CrossRefPubMedGoogle Scholar
  40. 40.
    Woodman, P.G. (2000) Biogenesis of the sorting endosome: the role of Rab5. Traffic 1, 695–701.CrossRefPubMedGoogle Scholar
  41. 41.
    Gorvel, J.P., Chavrier, P. , Zerial, M., and Gruenberg, J. (1991) rab5 controls early endosome fusion in vitro. Cell 64, 915–925.CrossRefPubMedGoogle Scholar
  42. 42.
    Nielsen, E., Christoforidis, S., Uttenweiler-Joseph, S., Miaczynska, M., Dewitte, F., Wilm, M., Hoflack, B., and Zerial, M. (2000) Rabenosyn-5, a novel Rab5 effector, is com-plexed with hVPS45 and recruited to endo-somes through a FYVE finger domain. J Cell Biol 151, 601–612.CrossRefPubMedGoogle Scholar
  43. 43.
    Bivona, T.G., Wiener, H.H., Ahearn, I.M., Silletti, J., Chiu, V.K., and Philips, M.R. (2004) Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. J Cell Biol 164, 461–470.CrossRefPubMedGoogle Scholar
  44. 44.
    Huynh, K.K., Eskelinen, E.L., Scott, C.C., Malevanets, A., Saftig, P., and Grinstein, S. (2007) LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J 26, 313–324.CrossRefPubMedGoogle Scholar
  45. 45.
    Harter, C., and Mellman, I. (1992) Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol 117, 311–325.CrossRefPubMedGoogle Scholar
  46. 46.
    Granger, B.L., Green, S.A., Gabel, C.A., Howe, C.L., Mellman, I., and Helenius., A. (1990) Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem 265, 12036–12043.PubMedGoogle Scholar
  47. 47.
    de Saint-Vis, B., Vincent, J., Vandenabeele, S., Vanbervliet, B., Pin, J.J., Ait-Yahia, S., Patel, S., Mattei, M.G., Banchereau, J., Zurawski, S., Davoust, J., Caux, C., and Lebecque, S. (1998) A novel lysosome-associated membrane glyco-protein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9:325–336.CrossRefPubMedGoogle Scholar
  48. 48.
    Blander, J.M., and Medzhitov, R. (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018.CrossRefPubMedGoogle Scholar
  49. 49.
    Kang, B.H., Plescia, J., Dohi, T., Rosa, J., Doxsey, S.J., and Altieri, D.C. (2007) Regulation of tumor cell mitochondrial homeosta-sis by an organelle-specific Hsp90 chaperone network. Cell 131, 257–270.CrossRefPubMedGoogle Scholar
  50. 50.
    Blander, J.M., and Medzhitov, R. (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. Magarian Blander
    • 1
  1. 1.Department of Medicine, Immunology InstituteMount Sinai School of MedicineNew York, NYUSA

Personalised recommendations