Advertisement

Inflammation-Related Aberrant Patterns of DNA Methylation: Detection and Role in Epigenetic Deregulation of Cancer Cell Transcriptome

  • Hiromu Suzuki
  • Minoru Toyota
  • Yutaka Kondo
  • Yasuhisa Shinomura
Part of the Methods in Molecular Biology™ book series (MIMB, volume 512)

Summary

It is now apparent that epigenetic abnormalities, in particular altered DNA methylation, play a crucial role in the development and progression of human cancers. DNA hypermethylation at promoter CpG islands is now recognized as a third mechanism by which inactivation of tumor suppressor genes occurs. Aberrant CpG island hypermethylation is also frequently observed in chronic inflammation and precancerous lesions, which suggests that it is an early event in tumorigenesis that could serve as a useful tumor marker. A variety of screening techniques have been developed for genome-wide screening of methylation status. Of those, transcriptome analysis coupled with pharmacological unmasking has emerged as a powerful tool for revealing DNA methylation patterns in cancer cells and identifying new tumor marker candidates.

Key words

Cancer epigenetics DNA methylation 5-aza-2′-Deoxycytidine Microarray MSP Bisulfite sequencing Pyrosequencing 

References

  1. 1.
    Herman, J. G., and Baylin, S. B. (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349, 2042–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Baylin, S. B., and Ohm, J. E. (2006) Epige-netic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107–16.CrossRefPubMedGoogle Scholar
  3. 3.
    Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286–98.CrossRefPubMedGoogle Scholar
  4. 4.
    Takai, D., and Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99, 3740–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Feinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics. Nat Rev Cancer 4, 143–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Eads, C. A., Lord, R. V., Kurumboor, S. K., Wickramasinghe, K., Skinner, M. L., Long, T. I., Peters, J. H., DeMeester, T. R., Danen-berg, K. D., Danenberg, P. V., Laird, P. W., and Skinner, K. A. (2000) Fields of aberrant CpG island hypermethylation in Barrett's esophagus and associated adenocarcinoma. Cancer Res 60, 5021–26.PubMedGoogle Scholar
  7. 7.
    Schulmann, K., Sterian, A., Berki, A., Yin, J., Sato, F., Xu, Y., Olaru, A., Wang, S., Mori, Y., Deacu, E., Hamilton, J., Kan, T., Krasna, M. J., Beer, D. G., Pepe, M. S., Abraham, J. M., Feng, Z., Schmiegel, W., Greenwald, B. D., and Meltzer, S. J. (2005) Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 24, 4138–48.PubMedGoogle Scholar
  8. 8.
    Kang, G. H., Lee, H. J., Hwang, K. S., Lee, S., Kim, J. H., and Kim, J. S. (2003) Aberrant CpG island hypermethylation of chronic gastritis, in relation to aging, gender, intestinal metaplasia, and chronic inflammation. Am J Pathol 163, 1551–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Chan, A. O., Lam, S. K., Wong, B. C., Wong, W. M., Yuen, M. F., Yeung, Y. H., Hui, W. M., Rashid, A., and Kwong, Y. L. (2003) Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52, 502–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Maekita, T., Nakazawa, K., Mihara, M., Naka-jima, T., Yanaoka, K., Iguchi, M., Arii, K., Kaneda, A., Tsukamoto, T., Tatematsu, M., Tamura, G., Saito, D., Sugimura, T., Ichinose, M., and Ushijima, T. (2006) High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 12, 989–95.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaneto, H., Sasaki, S., Yamamoto, H., Itoh, F., Toyota, M., Suzuki, H., Ozeki, I., Iwata, N., Ohmura, T., Satoh, T., Karino, Y., Satoh, T., Toyota, J., Satoh, M., Endo, T., Omata, M., and Imai, K. (2001) Detection of hypermeth-ylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut 48, 372–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Issa, J. P. , Ahuja, N., Toyota, M., Bronner, M. P., and Brentnall, T. A. (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61, 3573–7.PubMedGoogle Scholar
  13. 13.
    Sato, F., Harpaz, N., Shibata, D., Xu, Y., Yin, J., Mori, Y., Zou, T. T., Wang, S., Desai, K., Leytin, A., Selaru, F. M., Abraham, J. M., and Meltzer, S. J. (2002) Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res 62, 1148–51.PubMedGoogle Scholar
  14. 14.
    Sato, F., Shibata, D., Harpaz, N., Xu, Y., Yin, J., Mori, Y., Wang, S., Olaru, A., Deacu, E., Selaru, F. M., Kimos, M. C., Hytiroglou, P., Young, J., Leggett, B., Gazdar, A. F., Toyooka, S., Abraham, J. M., and Meltzer, S. J. (2002) Aberrant methylation of the HPP1 gene in ulcerative colitis-associated colorectal carcinoma. Cancer Res 62, 6820–2.PubMedGoogle Scholar
  15. 15.
    Laird, P. W. (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Ushijima, T. (2005) Detection and interpretation of altered methylation patterns in cancer cells. Nat Rev Cancer 5, 223–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. (1999) Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 59, 2307–12.PubMedGoogle Scholar
  18. 18.
    Costello, J. F., Frühwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., Wright, F. A., Feramisco, J. D., Peltomäki, P., Lang, J. C., Schuller, D. E., Yu, L., Bloomfield, C. D., Caligiuri, M. A., Yates, A., Nishikawa, R., Su Huang, H., Petrelli, N. J., Zhang, X., O'Dorisio, M. S., Held, W. A., Cavenee, W. K., and Plass, C. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24, 132–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Yamashita, K., Dai, T., Dai, Y., Yamamoto, F., and Perucho, M. (2003) Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell 4, 121–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijen-berg, M. P., Herman, J. G., and Baylin, S. B. (2002) A genomic screen for genes upregu-lated by demethylation and histone deacety-lase inhibition in human colorectal cancer. Nat Genet 31, 141–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamashita, K., Upadhyay, S., Osada, M., Hoque, M. O., Xiao, Y., Mori, M., Sato, F., Meltzer, S. J., and Sidransky, D. (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esopha-geal squamous cell carcinoma. Cancer Cell 2, 485–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Sato, N., Fukushima, N., Maitra, A., Matsuba-yashi, H., Yeo, C. J., Cameron, J. L., Hruban, R. H., and Goggins, M. (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63, 3735–42.PubMedGoogle Scholar
  23. 23.
    Schuebel, K. E., Chen, W., Cope, L., Glock-ner, S. C., Suzuki, H., Yi, J. M., Chan, T. A., Neste, L. V., Criekinge, W. V., Bosch, S. V., van Engeland, M., Ting, A. H., Jair, K., Yu, W., Toyota, M., Imai, K., Ahuja, N., Herman, J. G., and Baylin, S. B. (2007) Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet 3, e157.CrossRefGoogle Scholar
  24. 24.
    Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Meth-ylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 9821–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Xiong, Z., and Laird, P. W. (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25, 2532–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Blake, C., Shibata, D., Danenberg, P. V., and Laird, P. W. (2000) MethyLight: a high-throughput assay to measure DNA meth-ylation. Nucleic Acids Res 28, E32.CrossRefPubMedGoogle Scholar
  27. 27.
    Colella, S., Shen, L., Baggerly, K. A., Issa, J. P., and Krahe, R. (2003) Sensitive and quantitative universal Pyrosequencing methyla-tion analysis of CpG sites. Biotechniques 35, 146–50.PubMedGoogle Scholar
  28. 28.
    Toyota, M., Sasaki, Y., Satoh, A., Ogi, K., Kikuchi, T., Suzuki, H., Mita, H., Tanaka, N., Itoh, F., Issa, J. P., Jair, K. W., Schuebel, K. E., Imai, K., and Tokino, T. (2003) Epigenetic inactivation of CHFR in human tumors. Proc Natl Acad Sci U S A 100, 7818–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Taniguchi, H., Yamamoto, H., Hirata, T., Miyamoto, N., Oki, M., Nosho, K., Adachi, Y., Endo, T., Imai, K., and Shinomura, Y. (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24, 7946–52.CrossRefPubMedGoogle Scholar
  30. 30.
    Sato, H., Suzuki, H., Toyota, M., Nojima, M., Maruyama, R., Sasaki, S., Takagi, H., Sogabe, Y. , Sasaki, Y., Idogawa, M., Sonoda, T., Mori, M., Imai, K., Tokino, T., and Shinomura, Y. (2007) Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 28, 2459–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G., and Baylin, S. B. (1999) Synergy of demethylation and histone deacety-lase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21, 103–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Hiromu Suzuki
    • 1
  • Minoru Toyota
    • 1
  • Yutaka Kondo
    • 1
  • Yasuhisa Shinomura
    • 1
  1. 1.First Department of Internal MedicineSapporo Medical UniversitySapporoJapan

Personalised recommendations