Skip to main content

Redox Property of Ribonucleotide ReductaseSmall Subunit M2 and p53R2

  • Protocol
Advanced Protocols in Oxidative Stress I

Part of the book series: Methods In Molecular Biology ((MIMB,volume 477))

Abstract

Human ribonucleotide reductase (RR) small subunits, M2 and P53R2, play key roles in forming RR holoenzyme and supplying nucleotide precursors for DNA replication and repair. Currently, we are studying the redox property, structure, and function of hRRM2 and p53R2. In the cell-free system, p53R2 did not oxidize a reactive oxygen species (ROS) indicator Carboxy-H2DCFDA, but hRRM2 did. Further studies demonstrated that purified recombinant p53R2 protein has the catalase activity to scavenge H2O2. Over-expression of p53R2 reduced intracellular ROS and protected the mitochondrial membrane potential against oxidative stress, whereas over-expression of hRRM2 did not result in the collapse of mitochondrial membrane potential. Our findings suggest that p53R2 may play a key role in defending oxidative stress by scavenging ROS, and this antioxidant property is also important for its enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichard, P. and A. Ehrenberg (1983). Ribonucleotide reductase – a radical enzyme. Science 221(4610): 514–9.

    Article  CAS  PubMed  Google Scholar 

  2. Sahlin, M., A. Graslund, et al. (1989). Reduced forms of the iron-containing small subunit of ribonucleotide reductase from Escherichia coli. Biochemistry 28(6): 2618–25.

    CAS  Google Scholar 

  3. Davydov, A., P. P. Schmidt, et al. (1996). Reversible red-ox reactions of the diiron site in the mouse ribonucleotide reductase R2 protein. Biochem Biophys Res Commun 219(1): 213–8.

    Article  CAS  PubMed  Google Scholar 

  4. Kolberg, M., K. R. Strand, et al. (2004). Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta 1699(1–2): 1–34.

    CAS  PubMed  Google Scholar 

  5. Proshlyakov, D. A., M. A. Pressler, et al. (1998). Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. Proc Natl Acad Sci U S A 95(14): 8020–5.

    Article  CAS  PubMed  Google Scholar 

  6. Proshlyakov, D. A., M. A. Pressler, et al. (2000). Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290(5496): 1588–91.

    Article  CAS  PubMed  Google Scholar 

  7. Fan, H., C. Villegas, et al. (1998). The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res 58(8): 1650–3.

    CAS  PubMed  Google Scholar 

  8. Rauko, P., D. Romanova, et al. (1997). DNA-protective activity of new ribonucleotide reductase inhibitors. Anticancer Res 17(5A): 3437–40.

    CAS  PubMed  Google Scholar 

  9. Kimura, T., S. Takeda, et al. (2003). Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet 34(4): 440–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sastre, J., F. V. Pallardo, et al. (2003). The role of mitochondrial oxidative stress in aging. Free Radic Biol Med 35(1): 1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Smiley, S. T., M. Reers, et al. (1991). Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci U S A 88(9): 3671–5.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, H., H. Arakawa, et al. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404(6773): 42–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sahlin, M., B. M. Sjoberg, et al. (1990). Activation of the iron-containing B2 protein of ribonucleotide reductase by hydrogen peroxide. Biochem Biophys Res Commun 167(2): 813–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, X., Xue, L., Yen, Y. (2008). Redox Property of Ribonucleotide ReductaseSmall Subunit M2 and p53R2. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress I. Methods In Molecular Biology, vol 477. Humana Press. https://doi.org/10.1007/978-1-60327-517-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-517-0_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-218-6

  • Online ISBN: 978-1-60327-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics