Skip to main content

Role of Xenobiotic Metabolic Enzymes in Cancer Epidemiology

  • Protocol
Cancer Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 472))

Abstract

The cause of the majority of cancers is poorly understood albeit multifactorial. The ultimate consequence of etiological factors where defined is an alteration within the cellular genotype, which is manifested in the cells acquiring malignant phenotype. There are several environmental carcinogens that contribute to carcinogenesis. These carcinogens are metabolized by a large number of enzymes, including the cyto-chrome P 450 group, glutathione- S -transferase (GST), the uridine glucuronyl transferase (UGT) super-family, alcohol-metabolizing enzymes, sulphatases, etc. These enzymes can either inactivate carcinogens or in some cases generate reactive moieties that lead to carcinogenesis.

This review summarises the available evidence regarding the role of xenobiotic metabolic enzymes and their role in cancer epidemiology. The available data and studies have identified correlates between expression of various metabolizing enzymes with risk of malignancies known to be induced by their substrates. The data may have relevance in one population but not for another for a specific malignancy and at times may be conflicting. We believe that with mature data in the future it may be possible to stratify patients by risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers CD. Projection of Global Mortality and Burden of Disease from 2002 to 2030. WHO 2006.

    Google Scholar 

  2. Key TJ, Verkasalo PK, Banks E. Epidemiology of breast cancer. Lancet Oncology 2001; 2:133.

    Article  CAS  PubMed  Google Scholar 

  3. Boulton SJ. Cellular functions of the BRCA tumour-suppressor proteins. Biochem Soc Trans. 2006; 34(Pt 5):633–645.

    CAS  PubMed  Google Scholar 

  4. www.who.int/mediacentre/factsheets/fs297/en/index.html.

  5. Gonzalez FJ, Gelboin HV. Role of human cytochromes 450 in the metabolic activation of chemical carcinogens and toxins. Drug Metab Rev 1994; 26:165–183.

    Article  CAS  PubMed  Google Scholar 

  6. www.drnelson.utmem.edu.

  7. Capdevila Harris RC, Falck JR: Microsomal P450 function and Eicosanoid metabolism: Cell Mol Life Science 2002; 59(5):780–789.

    Article  Google Scholar 

  8. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286:487–491.

    Article  CAS  PubMed  Google Scholar 

  9. Nebert DW, Dalton TD. The role of cyto-chrome P450 enzymes in endogenous signaling pathways and environmental car-cinogenesis. Nat Rev Cancer 2006; 6:947–960.

    Article  CAS  PubMed  Google Scholar 

  10. Rendic S, DiCarlo FJ. Human cytochrome P 450 enzymes: Status report summarizing their reactions, substrates, inducers and inhibitors. Drug Metab Rev 1997; 29:413–580.

    Article  CAS  PubMed  Google Scholar 

  11. Windmill KF, McKinnon RA, Zhu X, Gae-digk A, Grant DM, McManus ME. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mutat Res 1997 May 12; 376(1–2):153–160.

    CAS  PubMed  Google Scholar 

  12. Hecht SS . Biochemistry, biology and carci-nogenicities of Tobacco Specific N-Nitros-amines Chem Res Toxicology 1998; June, Vol 11 No. 6, 560–603.

    Google Scholar 

  13. Caporaso N, Hayes RB, Dosemeci M, Hoover R, Ayesh R, Hetzel M, Idle J. Lung cancer risk, occupational exposure, and the Debrisoquine metabolic phenotype. Cancer Res 1989; 49:3675–3679.

    CAS  PubMed  Google Scholar 

  14. Jiao L, Bondy ML, Hassan MM, Chang DZ, Abbruzzese JL, Evans DB, Smolensky MH, Li D: Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer 2007; 109(5):840–848.

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Antona C, Ingelman-Sundberg M. Cytochrome P450 pharmacogenetics and cancer. Oncogene 2006; 25:1679–1691.

    Article  CAS  PubMed  Google Scholar 

  16. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 2004; 279(23):23847–23850.

    Article  CAS  PubMed  Google Scholar 

  17. Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y, Kato S. Modulation of oestrogen receptor signaling by association with the activated dioxin receptor. Nature 2003; 423:545–550.

    Article  CAS  PubMed  Google Scholar 

  18. Puga A Barnes SJ, Dalton TP, Chang C, Knudsen ES, Maier MA. Aromatic hydrocarbon receptor interaction with retinoblas-toma protein potentiates repression of E2F dependent transcription and cell cycle arrest. J Biol Chem 2000; 275:2943–2950.

    Article  Google Scholar 

  19. Currier N, Solomon SE, Demicco EG, Chang DL, Farago M, Ying H, Dominguez I, Sonenshein GE, Cardiff RD, Xiao ZX, Sherr DH, Seldin DC. Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol 2005; 33:726–737.

    Article  CAS  PubMed  Google Scholar 

  20. Momand J Wu HH, Dasgupta G. MDM2 — master regulator of the p53 tumor suppressor protein. Gene 2000; 242 (1–2): 15–29.

    Article  Google Scholar 

  21. Liehr JG. Dual role of oestrogens as hormones and pro-carcinogens: tumour initiation by metabolic activation of oestrogens. Eur J Cancer Prev 1997; 6:3–10.

    Article  CAS  PubMed  Google Scholar 

  22. Zumoff B. Does postmenopausal estrogen administration increase the risk of breast cancer? Contributions of animal, biochemical, and clinical investigative studies to a resolution of the controversy. Proc Soc Exp Biol Med 1998; 217:30–7.

    CAS  PubMed  Google Scholar 

  23. Russo J, Hasan Lareef M, Balogh G, Guo S, Russo IH. Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J Steroid Biochem Mol Biol 2003; 87:1–25.

    Article  CAS  PubMed  Google Scholar 

  24. Basseres D, Baldwin Jr AS. Nuclear factor- B and inhibitor of B kinase pathways in onco-genic initiation and progression. Oncogene 2006; 25:6817–6830.

    Article  CAS  PubMed  Google Scholar 

  25. Aklillu E, Oscarson M, Hidestrand M, Leidvik B, Otter C, Ingelman-Sundberg M, et al. Functional analysis of six different polymorphic CYP1B1 enzyme variants found in an Ethiopian population. Mol Pharmacol 2002; 61(3):586–594.

    Article  CAS  PubMed  Google Scholar 

  26. Yang CX, Matsuo K, Wang ZM, Tajima K, et al. Phase I/II enzyme gene polymorphisms and esophageal cancer: a meta-analysis of the literature. World J Gastroenterol 2005; 11:2531–2538.

    CAS  PubMed  Google Scholar 

  27. Slattery ML, Samowtiz W, Ma K, Murtaugh M, Sweeney C, Levin TR, Neuhausen S. CYP1A1, cigarette smoking, and colon and rectal cancer. Am J Epidemiol 2004; 160;842–852.

    Article  PubMed  Google Scholar 

  28. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrier A, Guino E, Navarro M, de Oca J, Capellà G, Canzian F; Bellvitge Colorectal Cancer Study Group. Comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics 2005; 15(8):535–546.

    Article  CAS  PubMed  Google Scholar 

  29. Rasmussen BB, Brix TH, Kyvik KO, Br ø sen K. The Interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics. 2002; 12(6):473–478.

    Article  CAS  PubMed  Google Scholar 

  30. Van Ashwegen CH, Purdy RH, Wittliff JL. Binding of 2-hydroxyestradiol and 4-hydroxyestradiol to estrogen receptors from human breast cancers. J Steroid Bio-chem 1989; 32(4):485–492.

    Article  Google Scholar 

  31. Zhu BT, Conney AH. Is 2-methoxyestradiol an endogenous estrogen metabolite that inhibits mammary carcinogenesis? Cancer Res 1998; 58(11):2269–2277.

    CAS  PubMed  Google Scholar 

  32. Hanna IH, Dawling S, Roodi N, Guengerich FP, Parl FF. Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: association of polymorphism with functional differences in estrogen hydroxylation activity. Cancer Res 2000; 60:3440–3444.

    CAS  PubMed  Google Scholar 

  33. Chang BL, Zheng SL, Isaacs SD, Turner A, Hawkins GA, Wiley KE, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB, Xu J. Polymorphisms in the CYP1B1 gene are associated with increased risk of prostate cancer. Br J Cancer 2003; 89(8):1524–1529.

    Article  CAS  PubMed  Google Scholar 

  34. Goodman MT, McDuffie K, Kolonel LN, Terada K, Donlon TA, Wilkens LR, Guo C, Le Marchand L. Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 2001; 10(3):209–216.

    CAS  PubMed  Google Scholar 

  35. Sasaki M, Tanaka Y, Okino ST, Nomoto M, Yonezawa S, Nakagawa M, Fujimoto S, Sakuragi N, Dahiya R. et al. Polymorphisms of the CYP1B1 gene as risk factors for human renal cell cancer. Clin Cancer Res 2004; 10(6):2015–2019.

    Article  CAS  PubMed  Google Scholar 

  36. Sasaki M, Tanaka Y, Kaneuchi M, Sakuragi N, Dahiya R. CYP1B1 gene polymorphisms have higher risk for endometrial cancer, and positive correlations with estrogen receptor and estrogen receptor ß expressions. Cancer Res 2003; 63(14):3913–3918.

    CAS  PubMed  Google Scholar 

  37. Watanabe J, Shimada T, Gillam EM, Ikuta T, Suemasu K, Higashi Y, Gotoh O, Kawajiri K, et al. Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 2000; 10(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  38. Ariyoshi N, Miyamoto M, Umetsu Y, Kunitoh H, Dosaka-Akita H, Sawamura Y, Yokota J, Nemoto N, Sato K, Kamataki T, et al. Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers. Cancer Epidemiol Biomar-kers Prev 2002; 11(9):890–894.

    CAS  Google Scholar 

  39. Nakajima M, Yamamoto T, Nunoya K, Yokoi T, Nagashima K, Inoue K, Funae Y, Shimada N, Kamataki T, Kuroiwa Y. Role of human cytochrome P4502A6 in C-oxida-tion of nicotine. Drug Metab Dispos 1996; 24(11):1212–1217.

    CAS  PubMed  Google Scholar 

  40. Benowitz NL, Pérez-Stable EJ, Herrera B, Jacob P 3rd. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans J Natl Cancer Inst 2002; 94(2):108–115.

    PubMed  Google Scholar 

  41. Kumagai J, Fujimura T, Takahashi S, Urano T, Ogushi T, Horie-Inoue K, Ouchi Y, Kita-mura T, Muramatsu M, Blumberg B, Inoue S. Cytochrome P450 2B6 is a growth-inhibitory and prognostic factor for prostate cancer. Prostate 2007; 67(10):1029–1037.

    Article  CAS  PubMed  Google Scholar 

  42. Waxman DJ, Attisano C, Guengerich FP, Lapenson DP. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 1988; 263(2):424–436.

    Article  CAS  PubMed  Google Scholar 

  43. Bergheim I, Wolfgarten E, Bollschweiler E, H ö lscher AH, Bode C, Parlesak A. Cyto-chrome P450 levels are altered in patients with esophageal squamous-cell carcinoma. World J Gastroenterol 2007; 13(7):997–1002.

    CAS  PubMed  Google Scholar 

  44. Knupfer H, Schmidt R, Stanitz D, et al. CYP2C and IL-6 expression in breast cancer. Breast 2004; 343(44):28–34.

    Article  Google Scholar 

  45. Caporaso NE, Tucker MA, Hoover RN, Hayes RB, Pickle LW, Issaq HJ, Muschik GM, Green-Gallo L, Buivys D, Aisner S, et al. Lung cancer and the debrisoquine metabolic phenotype: J Natl Cancer Inst 1990; 82(15):1264–1272.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw GL, Falk RT, Frame JN, Weiffenbach B, Nesbitt JC, Pass HI, Caporaso NE, Moir DT, Tucker MA. Genetic polymorphism of CYP2D6 and lung cancer risk. Cancer Epidemiol Biomarkers Prev 1998; 7(3):215–219.

    CAS  PubMed  Google Scholar 

  47. Laforest. L, Wikman H, Benhamou S, Saarikoski ST, Bouchardy C, Hirvonen A, Dayer P, Husgafvel-Pursiainen K. CYP2D6 gene polymorphism in Caucasian smokers: lung cancer susceptibility and phenotype-genotype relationships. Eur J Cancer 2000; 36(14):1825–1832.

    Article  CAS  PubMed  Google Scholar 

  48. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U, et al. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol 2006; 81(3):162–170.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez A, Ramírez V, Cuenca P, Sierra R. Polymorphisms in detoxification genes CYP1A1, CYP2E1, GSTT1 and GSTM1 in gastric cancer susceptibility Rev Biol Trop 2004; 52(3):591–600.

    PubMed  Google Scholar 

  50. Choi JY, Abel J, Neuhaus T, Ko Y, Harth V, Hamajima N, Tajima K, Yoo KY, Park SK, Noh DY, Han W, Choe KJ, Ahn SH, Kim SU, Hirvonen A, Kang D. Role of alcohol and genetic polymorphisms of CYP2E1 and ALDH2 in breast cancer development. Pharmacogenetics 2003; 13(2): 67–72.

    Article  CAS  PubMed  Google Scholar 

  51. Petridou E, Syrigou E, Toupadaki N, Zavitsanos X, Willett W, Trichopoulos D. Determinants of age at menarche as early life predictors of breast cancer risk. Int J Cancer 1996; 68:193–198.

    Article  CAS  PubMed  Google Scholar 

  52. Waxman DJ, Attisano C, Guengerich FP, Lapenson DP. Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 1988; 263(2):424–436.

    Article  CAS  PubMed  Google Scholar 

  53. Kadlubar FF, Berkowitz GS, Delongchamp RR, Wang C, Green BL, Tang G, Lamba J, Schuetz E, Wolff MS, et al. The CYP3A4*1B variant is related to the onset of puberty, a known risk factor for the development of breast cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(4):327–331.

    CAS  PubMed  Google Scholar 

  54. Keshava C, McCanlies EC, Weston A, et al. CYP3A4 polymorphisms—potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol 2004; 160(9):825–841.

    Article  PubMed  Google Scholar 

  55. Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, Patacsil M, Aplenc R, Wein AJ, Malkowicz SB, Rebbeck TR. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 2004; 64(22):8461–8467.

    Article  CAS  PubMed  Google Scholar 

  56. Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Oncol 2005; 23:205–229.

    Article  CAS  PubMed  Google Scholar 

  57. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54:1271–1294.

    Article  CAS  PubMed  Google Scholar 

  58. Dandara C, Ballo R, Parker MI, et al. CYP3A5 genotypes and risk of oesophageal cancer in two South African populations. Cancer Lett. 2005; 225(2):275–282.

    Article  CAS  PubMed  Google Scholar 

  59. Zhenhua L, Tsuchiya N, Narita S, Inoue T, Horikawa Y, Kakinuma H, Kato T, Ogawa O, Habuchi T. CYP3A5 gene polymorphism and risk of prostate cancer in a Japanese population. Cancer Letters 2005; 225(2):237–243.

    Article  PubMed  Google Scholar 

  60. McIlwain CC, Townsend DM, Tew KD, et al. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Onco-gene 2006; 25:1639–1648.

    Article  CAS  Google Scholar 

  61. Ates NA, Tamer L, Ates C, Ercan B, Elipek T, cal K, Camdeviren H, et al. Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. Biochem Genet 2005; 43(3–4): 149–163.

    Article  CAS  Google Scholar 

  62. Martinez C, Mart í n F, Fern á ndez JM, Garc í a-Mart í n E, Sastre J, D í az-Rubio M, Agúndez JA, Ladero JM, et al. Glutathione S-transferases mu 1, theta 1, pi 1, alpha 1 and mu 3 genetic polymorphisms and the risk of colorectal and gastric cancers in humans. Pharmacogenomics 2006; 7(5):711–718.

    Article  CAS  PubMed  Google Scholar 

  63. Pandey SN, Jain M, Nigam P, Choudhuri G, Mittal B, et al. Genetic polymorphisms in GSTM1, GSTT1, GSTP1, GSTM3 and the susceptibility to gallbladder cancer in North India. Biomarkers 2006; 11(3):250–261.

    Article  CAS  PubMed  Google Scholar 

  64. Schneider J, Bernges U, Philipp M, Woitow-itz HJ. GSTM1, GSTT1, and GSTP1 polymorphism and lung cancer risk in relation to tobacco smoking. Cancer Lett 2004; 208(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  65. Seitz HK, P ö schl G, Simanowski UA. Alcohol and cancer. Recent Dev Alcohol 1998; 14:67–95.

    Article  CAS  PubMed  Google Scholar 

  66. Stickel F, Schuppan D, Hahn EG, Seitz HK. Cocarcinogenic effects of alcohol in hepato-carcinogenesis. Gut 2002; 51(1):132–139.

    Article  CAS  PubMed  Google Scholar 

  67. Obe G, Ristow H. Mutagenic, cancerogenic and teratogenic effects of alcohol. Mutat Res 1979; 65(4):229–259.

    CAS  PubMed  Google Scholar 

  68. Dellarco VL, et al. A mutagenicity assessment of acetaldehyde. Mutat Res 1988; 195:1–20.

    CAS  PubMed  Google Scholar 

  69. Hashibe M, Boffetta P, Zaridze D, Shangina O, Szeszenia-Dabrowska N, Mates D, Janout V, Fabi á nov á E, Bencko V, Moullan N, Chabrier A, Hung R, Hall J, Canzian F, Brennan P. Evidence for an important role of alcohol- and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev 2006; 15(4).

    Google Scholar 

  70. Minegishi Y, Tsukino H, Muto M, Goto K, Gemma A, Tsugane S, Kudoh S, Nishiwaki Y, Esumi H, et al. Susceptibility to lung cancer and genetic polymorphisms in the alcohol metabolite-related enzymes alcohol dehydrogenase 3, aldehyde dehydrogenase 2, and cytochrome P450 2E1 in the Japanese population. Cancer 2007; 110(2):353–362.

    Article  CAS  PubMed  Google Scholar 

  71. Harty LC, Caporaso NE, Hayes RB, Winn DM, Bravo-Otero E, Blot WJ, Kleinman DV, Brown LM, Armenian HK, Fraumeni JF Jr, Shields PG, et al. Alcohol dehydro-genase 3 genotype and risk of oral cavity and pharyngeal cancers. J Natl Cancer Inst 1997; 89:1698–1705.

    Article  CAS  PubMed  Google Scholar 

  72. Chen YJ, Chen C, Wu DC, Lee CH, Wu CI, Lee JM, Goan YG, Huang SP, Lin CC, Li TC, Chou YP, Wu MT. Interactive effects of lifetime alcohol consumption and alcohol and aldehyde dehydrogenase polymorphisms on esophageal cancer risks. Int J Cancer 2006; 119(12):2827–2831.

    Article  CAS  PubMed  Google Scholar 

  73. Hori H, Kawano T, Endo M, Yuasa Y. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and human esophageal squamous cell carcinoma susceptibility. J Clin Gastroenterol 1997; 25(4):568–575.

    Article  CAS  PubMed  Google Scholar 

  74. Stanway SJ, Delavault P, Purohit A, Woo LW, Thurieau C, Potter BV, Reed MJ, et al. Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist 2007; 12:370–374.

    Article  CAS  PubMed  Google Scholar 

  75. Chacko P, Rajan B, Mathew BS, Joseph T, Pillai MR. CYP17 and SULT1A1 gene polymorphisms in Indian breast cancer. Breast Cancer 2004; 11(4):380–388.

    Article  PubMed  Google Scholar 

  76. Shatalova EG, Walther SE, Favorova OO, Rebbeck TR, Blanchard RL. Genetic polymorphisms in human SULT1A1 and UGT1A1 genes associate with breast tumor characteristics: a case-series study. Breast Cancer Res 2005; 7(6):R909–921.

    Article  CAS  PubMed  Google Scholar 

  77. Rebbeck TR, Troxel AB, Wang Y, Walker AH, Panossian S, Gallagher S, Shatalova EG, Blanchard R, Bunin G, DeMichele A, Rubin SC, Baumgarten M, Berlin M, Schinnar R, Berlin JA, Strom BL, et al. Estrogen sulfa-tion genes, hormone replacement therapy, and endometrial cancer risk. J Natl Cancer Inst 2006; 98(18):1311–1320.

    Article  CAS  PubMed  Google Scholar 

  78. Wang Y Y, Spitz MR, Tsou AM, Zhang K, Makan N, Wu X. Sulfotransferase (SULT) 1A1 polymorphism as a predisposition factor for lung cancer: a case-control analysis. Lung Cancer 2002; 35(2):137–142.

    Article  CAS  PubMed  Google Scholar 

  79. Wu MT, Wang YT, Ho CK, Wu DC, Lee YC, Hsu HK, Kao EL, Lee JM. SULT1A1 polymorphism and esophageal cancer in males. Int J Cancer 2003; 103(1):101–104.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Singh, M.S., Michael, M. (2009). Role of Xenobiotic Metabolic Enzymes in Cancer Epidemiology. In: Verma, M. (eds) Cancer Epidemiology. Methods in Molecular Biology, vol 472. Humana Press. https://doi.org/10.1007/978-1-60327-492-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-492-0_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-491-3

  • Online ISBN: 978-1-60327-492-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics