Advertisement

Gene Trapping in Mouse Embryonic Stem Cells

  • Jane Brennan
  • William C. Skarnes
Protocol
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

Gene trapping in mouse embryonic stem (ES) cells offers a method to create random developmental mutants with a direct route to cloning and defining the expression pattern of the disrupted gene (1). Gene trapping involves the use of reporter gene constructs that are activated following insertion into endogenous transcription units. A number of plasmid- and retroviral-based vectors have been developed, which differ in their requirements for reporter gene activation (reviewed in refs. 2 and 3). “Promoter trap” vectors simply consist of a promot-erless reporter gene that is activated following insertions in exons of genes. In contrast, “gene trap” vectors contain a splice acceptor sequence upstream of a reporter and are activated following insertions into introns of genes. Both promoter and gene trap insertions create a fusion transcript from which a portion of the endogenous gene may be readily cloned (4,5). The pattern of reporter gene activity can be monitored in...

Keywords

Embryonic Stem Cell Gene Trap Gene Trap Vector Sodium Lauryl Sarcosinate Promoter Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gossler, A., Joyner, A. L., Rossant, J., and Skarnes, W.C. (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465.CrossRefPubMedGoogle Scholar
  2. 2.
    Skarnes, W. C. (1993) The identification of new genes: gene trapping in transgenic mice. Curr. Op. Biotech. 4, 684–689.CrossRefGoogle Scholar
  3. 3.
    Gossler, A. and Zachgo, J. (1993) Gene and enhancer trap screens in ES cell chi-maeras, in Gene Targeting: A Practical Approach (Joyner, A., ed.), Oxford University Press, Oxford, pp. 181–227.Google Scholar
  4. 4.
    von Melchner, H., DeGregori, J. V., Rayburn, H., Reddy, S., Friedel, C., and Ruley, H. E. (1992) Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev. 6, 919–927.CrossRefGoogle Scholar
  5. 5.
    Skarnes, W. C., Auerbach, B. A., and Joyner, A. L. (1992) A gene trap approach in mouse embryonic stem cells: the lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918.CrossRefPubMedGoogle Scholar
  6. 6.
    Wurst, W., Rossant, J., Prideaux, V., Kownacka, M., Joyner, A., Hill, D. P., Guillemot, F., Gasca, S., Cado, D., Auerbach, A., and Ang, S.-L. (1995). A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139, 889–899.PubMedGoogle Scholar
  7. 7.
    Friedrich, G. and Soriano, P. (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523.CrossRefPubMedGoogle Scholar
  8. 8.
    Skarnes, W. C., Moss, J. E., Hurtley, S. M., and Beddington, R. S. P. (1995) Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596.CrossRefPubMedGoogle Scholar
  9. 9.
    DeGregori, J., Russ, A., von Melchner, H., Rayburn, H., Priyaranjan, P., Jenkins, N. A., Copeland, N. G., and Ruley, H. E. (1994) A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev. 8, 265–276.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, Z., Friedrich, G. A., and Soriano, P. (1994) Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2993–2301.Google Scholar
  11. 11.
    Takeuchi, T, Yamazaki, Y., Katoh-Fuki, Y., Tsuchiya, R., Kondo, S., Motoyama, J., and Higashinakagawa, T. (1995) Gene trap capture of a novel mouse gene jumonji, required for neural tube development. Genes Dev. 9, 1211–1222.CrossRefPubMedGoogle Scholar
  12. 12.
    Kerr, W. G., Nolan, G. P., Serafini, A. T., and Herzenberg, L. A. (1989) Transcrip-tionally defective retroviruses containing lacZ for the in situ detection of endogenous genes and developmentally regulated chromatin. Cold Spring Harbor Symp. Quant. Biol. 54, 767–776.PubMedGoogle Scholar
  13. 13.
    Mountford, P. S. and Smith, A. G. (1995) Internal ribosome entry sites and dicis-tronic RNAs in mammalian transgenesis. Trends Genet. 11(5), 179–184.CrossRefPubMedGoogle Scholar
  14. 14.
    Frohman, M. A., Dush, M. K., and Martin, G. R. (1988) Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85, 8998–9002.CrossRefPubMedGoogle Scholar
  15. 15.
    Robertson, E. (ed.) (1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. IRL, Oxford.Google Scholar
  16. 16.
    Joyner, A. (ed.) (1993) Gene Targeting: A Practical Approach. Oxford University Press, Oxford.Google Scholar
  17. 17.
    Wassarman, P. M. and DePamphilis, M. L. (eds.) (1993) Methods in Enzymology, vol. 225: Guide to Techniques in Mouse Development. Academic, San Diego, CA.Google Scholar
  18. 18.
    Hogan, B., Beddington, R., Costanini, F., and Lacy, E. (eds.) (1994) Manipulating the Mouse Embryo. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  19. 19.
    Nichols, J., Evans, E. P., and Smith, A. G. (1990) Establishment of germline-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348.PubMedGoogle Scholar
  20. 20.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (eds.) (1982) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N Y, pp 1.21–1.52.Google Scholar
  21. 21.
    Smith, A. G. (1991) Culture and differentiation of embryonic stem cells. J. Tissue Culture Meth. 13, 89–94.CrossRefGoogle Scholar
  22. 22.
    Ure, J. M., Fiering, S., and Smith, A. G. (1992) A rapid and efficient method for freezing and recovering clones of embryonic stem cells. Trends Genetics 8(1), 6.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Jane Brennan
    • 1
  • William C. Skarnes
    • 2
  1. 1.Centre for Integrative PhysiologyUniversity of EdinburghEdinburghUK
  2. 2.Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK

Personalised recommendations