Skip to main content

Recent Advances in Meganuclease-and Transposon-Mediated Transgenesis of Medaka and Zebrafish

  • Protocol
Molecular Embryology

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 461))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins, N. (1996) Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci USA 93:7777–7782.

    Article  CAS  PubMed  Google Scholar 

  2. Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666–669.

    Article  CAS  PubMed  Google Scholar 

  3. Linney E, Hardison NL, Lonze BE, Lyons S, DiNapoli L (1999) Transgene Expression in zebrafish: a comparison of retroviral-vector and DNA-injection approaches. Dev Biol 213:201–216.

    Article  Google Scholar 

  4. Hong Y, Winkler C, Schartl M (1998) Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci USA 95:3679–3684.

    Article  CAS  PubMed  Google Scholar 

  5. Inoue K, Yamashita S, Hata J, Kabeno S, Asada S, Nagahisa E, Fujita T (1990) Electroporation as a new technique for producing transgenic fish. Cell Differ Dev 29:123–128.

    Article  CAS  PubMed  Google Scholar 

  6. Lee K-Y, Huang H, Ju B, Yang Z, Lin S (2002) Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat Biotechnol 20:795–799.

    CAS  PubMed  Google Scholar 

  7. Ma CG, Fan LC, Ganassin R, Bols N, Collodi P (2001) Production of zebrafish germ-line chimeras from embryo cell cultures. Proc Natl Acad Sci USA 98:2461–2466.

    Article  CAS  PubMed  Google Scholar 

  8. Muller F, Ivics Z, Erdelyi F, Papp T, Varadi L, Horvath L, Maclean N (1992) Introducing foreign genes into fish eggs with electroporated sperm as a carrier. Molec Marine Biol Biotechnol 1:276–281.

    CAS  Google Scholar 

  9. Ono H, Hirose E, Miyazaki K, Yamamoto H, Matsumoto J (1997) Transgenic medaka fish bearing the mouse tyrosinase gene: expression and transmission of the transgene following electroporation of the orange-colored variant. Pigment Cell Res 10:168–175.

    Article  CAS  PubMed  Google Scholar 

  10. Ozato K, Kondoh H, Inohara H, Iwamatsu T, Wakamatsu Y, Okada TS (1986) Production of transgenic fish: introduction and expression of chicken delta-crystallin gene in medaka embryos. Cell Differ 19:237–244.

    Article  CAS  PubMed  Google Scholar 

  11. Sin FY, Walker SP, Symonds JE, Mukherjee UK, Khoo JG, Sin IL (2000) Electropo-ration of salmon sperm for gene transfer: efficiency, reliability, and fate of trans-gene. Molec Repro Dev 56:285–288.

    Article  CAS  Google Scholar 

  12. Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreignsequences injected into early zebrafish embryos. Development 103:403–412.

    CAS  PubMed  Google Scholar 

  13. Sussman R (2001) Direct DNA delivery into zebrafish embryos employing tissue culture techniques. Genesis 31:1–5.

    Article  CAS  PubMed  Google Scholar 

  14. Tawk M, Tuil D, Torrente Y, Vriz S, Paulin D (2002) High-efficiency gene transfer into adult fish: a new tool to study fin regeneration. Genesis 32:27–31.

    Article  CAS  PubMed  Google Scholar 

  15. Wakamatsu Y, Ju BS, Pristyaznhyuk I, Niwa K, Ladygina T, Kinoshita M, Araki K, Ozato K (2001) Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc Natl Acad Sci USA 98:1071–1076.

    Article  CAS  PubMed  Google Scholar 

  16. Yamauchi M, Kinoshita M, Sasanuma M, Tsuji S, Terada MMM, Ishikawa Y (2000) Introduction of a foreign gene into medakafish using the particle gun method. J Exp Zool 287:285–293.

    Article  CAS  PubMed  Google Scholar 

  17. Zelenin AV, Alimov AA, Barmintzev VA, Beniumov AO, Zelenina IA, Krasnov AM, Kolesnikov VA (1991) The delivery of foreign genes into fertilized fish eggs using high-velocity microprojectiles. FEBS Lett 287:118–20.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu Z Y, Sun YH (2000) Embryonic and genetic manipulation in fish. Cell Res 10:17–27.

    Article  CAS  PubMed  Google Scholar 

  19. Chou CY, Horng LS, Tsai HJ (2001) Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res. 10:303–315.

    Article  CAS  PubMed  Google Scholar 

  20. Grabher C, Joly JS, Wittbrodt, J. (2004b) Highly efficient zebrafish transgenesis mediated by the meganuclease I-SceI. Methods Cell Biol in press.

    Google Scholar 

  21. Lin S (2000) Transgenic zebrafish. Methods Molec Biol 136:375–383.

    CAS  Google Scholar 

  22. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly J-S (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118:91–98.

    Article  CAS  PubMed  Google Scholar 

  23. Allen ND, Cran DG, Barton SC, Hettle S, Reik W, Surani MA (1988) Trans-genes as probes for active chromosomal domains in mouse development. Nature. 333:852–855.

    Article  CAS  PubMed  Google Scholar 

  24. Gossler A, Joyner AL, Rossant J, Skarnes WC (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465.

    Article  CAS  PubMed  Google Scholar 

  25. Korn R, Schoor M, Neuhaus H, Henseling U, Soininen R, Zachgo J, Gossler A (1992) Enhancer trap integrations in mouse embryonic stem cells give rise to staining patterns in chimaeric embryos with a high frequency and detect endogenous genes. Mechan Dev 39:95–109.

    Article  CAS  Google Scholar 

  26. O'Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127.

    Article  PubMed  Google Scholar 

  27. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with trans-posable element vectors. Science 218:348–353.

    Article  CAS  PubMed  Google Scholar 

  28. Bayer TA, Campos-Ortega JA (1992) A transgene containing lacZ is expressed in primary sensory neurons in zebrafish. Development 115:421–426.

    CAS  PubMed  Google Scholar 

  29. Collas P, Alestrom P (1998) Nuclear localization signals enhance germline transmission of a transgene in zebrafish. Transgenic Res 7:303–309.

    Article  CAS  PubMed  Google Scholar 

  30. Culp P, Nusslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injectedinto fertilized zebrafish eggs. Proc Natl Acad Sci USA 88:7953–7957.

    Article  CAS  PubMed  Google Scholar 

  31. Lin S, Yang S, Hopkins N (1994b) lacZ expression in germline transgenic zebrafish can be detected in living embryos. Dev Biol 161:77–83.

    Article  Google Scholar 

  32. Stuart GW, Vielkind JR, McMurray J V, Westerfield M (1990) Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109:577–584.

    CAS  PubMed  Google Scholar 

  33. Tanaka M, Kinoshita M (2001) Recent progress in the generation of transgenic medaka (Oryzias latipes). Zoo Sci 18:615–622.

    Article  CAS  Google Scholar 

  34. Higashijima S, Okamoto H, Ueno N, Hotta Y, Eguchi G (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289–299.

    Article  CAS  PubMed  Google Scholar 

  35. Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002.

    Article  CAS  PubMed  Google Scholar 

  36. Garrick D, Fiering S, Martin DIK, Whitelaw E (1998) Repeat-induced gene silencing in mammals. Nat Gen 18:56–59.

    Article  CAS  Google Scholar 

  37. Mehtali M, LeMeur M, Lathe R (1990) The methylation-free status of a housekeeping transgene is lost at high copy number. Gene 91:179–184.

    Article  CAS  PubMed  Google Scholar 

  38. Iyengar A, Muller F, Maclean N (1996) Regulation and expression of transgenes in fish—a review. Transgenic Res 5:147–166.

    Article  CAS  PubMed  Google Scholar 

  39. Elgin SC (1990) Chromatin structure and gene activity. Curr Opin Cell Biol 2: 437–445.

    Article  CAS  PubMed  Google Scholar 

  40. Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155.

    Article  CAS  PubMed  Google Scholar 

  41. Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202.

    Article  CAS  PubMed  Google Scholar 

  42. Fadool JM, Hartl DL, Dowling JE (1998) Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc Natl Acad Sci USA 95:5182–5186.

    Article  CAS  PubMed  Google Scholar 

  43. Grabher C, Henrich T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2003) Transposon-mediated enhancer trapping in medaka. Gene 322:57–66.

    Article  CAS  PubMed  Google Scholar 

  44. Grabher C, Henrich, T, Sasado T, Arenz A, Wittbrodt J, Furutani-Seiki M (2004) Erratum: transposon-mediated enhancer trapping in medaka. Gene 327:239.

    Article  CAS  Google Scholar 

  45. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional trans-posase of the Tol 2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97:11403–11408.

    Article  CAS  PubMed  Google Scholar 

  46. Raz E, van Luenen HG, Schaerringer B, Plasterk RHA, Driever W (1998) Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr Biol 8:82–88.

    Article  CAS  PubMed  Google Scholar 

  47. Beylot B, Spassky A (2001) Chemical probing shows that the intron-encoded endo-nuclease I-SceI distorts DNA through binding in monomeric form to its homing site. J BiolChem 276:25243–2553.

    CAS  Google Scholar 

  48. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41:383–394.

    Article  CAS  PubMed  Google Scholar 

  49. Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388.

    Article  CAS  PubMed  Google Scholar 

  50. Mueller JE, Bryk M, Loizos N, Belfort M (1993) In: Linn SM et al. (eds.) Nucleases. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 111–143.

    Google Scholar 

  51. Monteilhet C, Perrin A, Thierry A, Colleaux L, Dujon B (1990) Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endo-nuclease encoded by a group I intron. Nucleic Acids Res18:1407–1413.

    Article  CAS  PubMed  Google Scholar 

  52. Perrin A, Buckle M, Dujon B (1993) Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J 12:2939–2947.

    CAS  PubMed  Google Scholar 

  53. Moure CM, Gimble FS, Quiocho, F.A. (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 334:685–695.

    Article  CAS  PubMed  Google Scholar 

  54. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973.

    CAS  PubMed  Google Scholar 

  55. Bellen HJ, O'Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300.

    Article  CAS  PubMed  Google Scholar 

  56. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–1030.

    Article  CAS  PubMed  Google Scholar 

  57. Greenwald I (1985) lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 43:583–590.

    Article  CAS  PubMed  Google Scholar 

  58. Moerman DG, Benian GM, Waterston RH (1986) Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc Natl Acad Sci USA 83:2579–2583.

    Article  CAS  PubMed  Google Scholar 

  59. Osborne BI, Wirtz U, Baker B (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7:687–701.

    Article  CAS  PubMed  Google Scholar 

  60. Bellen HJ, Wilson C, Gibson G, Grossniklaus U, Pearson RK, O'Kane C, Gehring WJ (1990) P-element-mediated enhancer detection allows rapid identification of developmentally regulated genes and cell specific markers in Drosophila. J Physiol (Paris) 84:33–41.

    CAS  Google Scholar 

  61. Cooley L, Berg C, Spradling, A. (1988) Controlling P element insertional mutagen-esis. Trends Genet 4:254–258.

    Article  CAS  PubMed  Google Scholar 

  62. Sentry JW, Kaiser K (1992) P element transposition and targeted manipulation of the Drosophila genome. Trends Genet 8:329–331.

    CAS  PubMed  Google Scholar 

  63. Gibbs PD, Gray A, Thorgaard G (1994) Inheritance of P element and reporter gene sequences in zebrafish. Mol Marine Biol Biotechnol 3:317–326.

    CAS  PubMed  Google Scholar 

  64. Handler AM, Gomez SP, O'Brochta DA (1993) A functional analysis of the P-ele-ment gene-transfer vector in insects. Arch Insect Biochem Physiol 22:373–384.

    Article  CAS  PubMed  Google Scholar 

  65. Rio DC, Barnes G, Laski FA, Rine J, Rubin GM (1988) Evidence for Drosophila P element transposase activity in mammalian cells and yeast. J Mol Biol 200:411–415.

    Article  CAS  PubMed  Google Scholar 

  66. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam 3. Cell 66:465–471.

    Article  CAS  PubMed  Google Scholar 

  67. Koga A, Inagaki H, Bessho Y, Hori H (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Molec Genl Genet 249:400–405.

    CAS  Google Scholar 

  68. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383:30.

    Article  CAS  PubMed  Google Scholar 

  69. Kawakami K, Noda T (2004) Transposition of the Tol 2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166:895–899.

    Article  CAS  PubMed  Google Scholar 

  70. Plasterk RH (1996) The Tc1/mariner transposon family. Curr Topics Microbiol Immunol 204:125–143.

    CAS  Google Scholar 

  71. Lampe DJ, Churchill ME, Robertson HM. (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470–5479.

    CAS  PubMed  Google Scholar 

  72. Vos JC, De Baere I, Plasterk RH (1996) Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev 10:755–761.

    Article  CAS  PubMed  Google Scholar 

  73. Loukeris TG, Arca B, Livadaras I, Dialektaki G, Savakis C (1995) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92:9485–9489.

    Article  CAS  PubMed  Google Scholar 

  74. Gueiros-Filho FJ, Beverley SM (1997) Trans-kingdom transposition of the Dro-sophila element mariner within the protozoan Leishmania. Science 276:1716–1719.

    Article  CAS  PubMed  Google Scholar 

  75. Goodier JL, Davidson WS (1994) Tc1 transposon-like sequences are widely distributed in salmonids. J Mol Biol 241: 26–34.

    Article  CAS  PubMed  Google Scholar 

  76. Ivics Z, Izsvak Z, Minter A, Hackett PB (1996) Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci USA 93:5008–5013.

    Article  CAS  PubMed  Google Scholar 

  77. Lam WL, Lee TS, Gilbert W (1996a) Active transposition in zebrafish. Proc Natl Acad Sci USA 93:10870–10875.

    Article  CAS  Google Scholar 

  78. Lam WL, Seo P, Robison K, Virk S, Gilbert W (1996b) Discovery of amphibian Tc1-like transposon families. J Mol Biol 257:359–366.

    Article  CAS  Google Scholar 

  79. Radice AD, Bugaj B, Fitch DH, Emmons SW (1994) Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol Gen Genet 244:606–612.

    Article  CAS  PubMed  Google Scholar 

  80. Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501 - 5–10.

    Google Scholar 

  81. Dupuy AJ, Clark K, Carlson CM, Fritz S, Davidson AE, Markley KM, Finley K, Fletcher CF, Ekker SC, Hackett PB, Horn S, Largaespada DA (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499.

    Article  CAS  PubMed  Google Scholar 

  82. Dupuy AJ, Fritz S, Largaespada DA (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30:82–88.

    Article  CAS  PubMed  Google Scholar 

  83. Fischer SEJ, Wienholds E, Plasterk RHA (2001) Regulated transposition of a fish transposon in the mouse germ line. Proc Natl Acad Sci USA 98:6759–6764.

    Article  CAS  PubMed  Google Scholar 

  84. Horie K, Kuroiwa A, Ikawa M, Okabe M, Kondoh G, Matsuda Y, Takeda J (2001) Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc Natl Acad Sci USA 98:9191–9196.

    Article  CAS  PubMed  Google Scholar 

  85. Vigdal TJ, Kaufman CD., Izsvak Z, Voytas DF, Ivics Z (2002) Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/ mariner transposable elements. J Mol Biol 323:441–452.

    Article  CAS  PubMed  Google Scholar 

  86. Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 318:1221–1235.

    Article  CAS  PubMed  Google Scholar 

  87. Fu Y, Wang Y, Evans SM (1998) Viral sequences enable efficient and tissue-specific expression of transgenes in Xenopus. Nat Biotechnol 16:253–257.

    Article  CAS  PubMed  Google Scholar 

  88. Hsiao CD, Hsieh FJ, Tsai HJ (2001) Enhanced expression and stable transmission of transgenes flanked by inverted terminal repeats from adeno-associated virus in zebrafish. Dev Dyn 220:323–336.

    Article  CAS  PubMed  Google Scholar 

  89. Gong WJ, Golic KG (2003) Ends-out, or replacement, gene targeting in Drosophila. Proc Natl Acad Sci USA (in press).

    Google Scholar 

  90. Zayed H, Izsvak Z, Walisko O, Ivics Z (2004) Development of hyperactive Sleeping Beauty transposon vectors by mutational analysis. Mol Ther 9:292–304.

    Article  CAS  PubMed  Google Scholar 

  91. Yusa K, Takeda J, Horie K (2004) Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation. Mol Cell Biol 24:4004–4018.

    Article  CAS  PubMed  Google Scholar 

  92. Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31:6873–6881.

    Article  CAS  PubMed  Google Scholar 

  93. Westerfield M (1995) The zebrafish book. University of Oregon Press, Eugene.

    Google Scholar 

  94. Yamamoto T (1975) Medaka (killifish), biology and strains. Keigaku, Tokyo.

    Google Scholar 

  95. Meng A, Jessen JR, Lin S (1999) Transgenesis. Methods Cell Biol 60:133–148.

    Article  CAS  PubMed  Google Scholar 

  96. Hyatt TM, Ekker SC (1999) Vectors and techniques for ectopic gene expression in zebrafish. Methods Cell Biol 59:117–126.

    Article  CAS  PubMed  Google Scholar 

  97. Wormington M (1991) Preparation of synthetic mRNAs and analyses of translational efficiency in microinjected Xenopus oocytes. Methods Cell Biol 36:167–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues in the lab for critical and insightful input and helpful comments, to Thorsten Henrich for his pioneering experiments with SB, and to Erika Grzebisz for excellent animal husbandry. This work was supported by grants of the German Research Foundation (DFG) and the EU to Joachim Wittbrodt.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Grabher, C., Wittbrodt, J. (2008). Recent Advances in Meganuclease-and Transposon-Mediated Transgenesis of Medaka and Zebrafish. In: Sharpe, P.T., Mason, I. (eds) Molecular Embryology. METHODS IN MOLECULAR BIOLOGY™, vol 461. Humana Press. https://doi.org/10.1007/978-1-60327-483-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-483-8_36

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-431-9

  • Online ISBN: 978-1-60327-483-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics