Small-Scale Marker-Based Screening for Mutations in Zebrafish Development

  • D. Currie Peter
  • F. Schilling Thomas
  • W. Ingham Philip
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

We describe a standardized mutagenic protocol and a methodology for small-scale directed screening of the zebrafish genome for mutations in specific developmental processes. The methods are based primarily on those developed for large-scale screens in Tubingen, Germany; Boston, MA; and Eugene, OR as well as our experiences with a smaller facility. By combining a marker-based screening protocol with both haploid and diploid screening methods, one can efficiently recover mutants in specific processes.

Random mutagenesis provides the ability to survey the genome of an organism, without bias, for genes that function in particular processes. For many years, geneticists have been reaping the rich harvest of mutations produced by such a mutagenic approach, directed against particular developmental processes of the fruit fly Drosophila melanogaster (1). Analysis of the genes uncovered by this approach has revolutionized our understanding of the genetic control of animal...


Early Pressure Alcian Blue Zebrafish Embryo Zebrafish Genome Haploid Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nusslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.CrossRefPubMedGoogle Scholar
  2. 2.
    Rinchink, E. M. (1991) Chemical mutagenesis and fine-structure functional analy sis of the mouse genome. Trends Genet. 7, 15–21.CrossRefGoogle Scholar
  3. 3.
    Kimmel, C. B. (1989) Genetics and early development of zebrafish. Trends Genet. 5, 283–288.CrossRefPubMedGoogle Scholar
  4. 4.
    Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Produc tion of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291, 293–296.CrossRefPubMedGoogle Scholar
  5. 5.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995) Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 203, 253–310.PubMedGoogle Scholar
  6. 6.
    Warga, R. M. and Kimmel, C. B. (1990) Cell movements during epiboly and gas-trulation in zebrafish. Development 108, 569–580.PubMedGoogle Scholar
  7. 7.
    Kimmel, C. B., Warga, R. M., and Schilling, T. F. (1990) Origin and organization of the zebrafish fate map. Development 108, 581–594.PubMedGoogle Scholar
  8. 8.
    Mullins, M. C., Hammerschmidt, M., Haffter, P., and Nusslein-Volhard, C. (1994) Large scale mutagenesis in the zebrafish: in search of genes controlling develop ment in a vertebrate. Curr. Biol. 4, 189–202.CrossRefPubMedGoogle Scholar
  9. 9.
    Solnica-Krezel, L. A., Schier, F., and Driever, W. (1994) Efficent recovery of ENU induced mutations from the zebrafish germline. Genetics 136, 1401–1420.PubMedGoogle Scholar
  10. 10.
    Walker, C. and Streisinger, G. (1993) Induction of mutations by ³-rays in the pre-gonial germ cells of zebrafish embryos. Genetics 103, 125–136.Google Scholar
  11. 11.
    Postlethwaite, J. H., Johonson, S. L., Midson, C. N., Talbolt, W. S., Gates, M., Ballinger, E. W., Africa, D., Andrews, R., Carl, T., Eisen, J. S., et al. (1994) A genetic map for the zebrafish. Science 264, 699–703.CrossRefGoogle Scholar
  12. 12.
    Westerfield, M. (1993) The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio). The University of Oregon Press, Eugene, OR.Google Scholar
  13. 13.
    Jowett, T. and Lettice, L. (1994) Whole-mount in-situ hybridizations on zebrafish embryos using a mixture of digoxigenin-labeled and fluorescein-labeled probes. Trends Genet. 10, 73,74.CrossRefPubMedGoogle Scholar
  14. 14.
    Kimmel, C. B., Kane, D. A., Walker, C., Warga, C. M., and Rothman, M. B. (1989) A mutation that changes cell fate in the zebrafish embryo. Nature 337, 358–362.CrossRefPubMedGoogle Scholar
  15. 15.
    Halpern, M. E., Ho, R. K., Walker, C., and Kimmel, C. B. (1993) Induction of mus cle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111.PubMedGoogle Scholar
  16. 16.
    Hatta, K., Kimmel, C. B., Ho, R. K., and Walker, C. (1991) The cyclops muta tion blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341.CrossRefPubMedGoogle Scholar
  17. 17.
    Kelly, W.L. and Bryden, M. M. (1983). A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technol. 58, 131–134.PubMedGoogle Scholar
  18. 18.
    Allende, M. L. and Weinberg, E. S. (1994) The expression pattern of two zebrafish achaete scute homolog (ash) genes is altered in the embryonic brain of the cyclops mutant. Devel. Bio. 166, 509–530.CrossRefGoogle Scholar
  19. 19.
    Morita, T., Nitta, H., Kiyama, Y., Mori, H., and Mishina, M. (1995) Differential expression of 2 zebrafish emx homeoprotein messenger-RNAs in the developing brain. Neurosci. Lett. 198, 131–134.CrossRefPubMedGoogle Scholar
  20. 20.
    Mori, H., Miyazaki, Y., Morita, T., Nitta, H., and Mishina, M. (1994) Different spatio-temporal expression of three otx homeoprotein transcripts during zebrafish embryogenesis. Mol. Brain. Res. 27, 221–231.CrossRefPubMedGoogle Scholar
  21. 21.
    Krauss, S., Johansen, T., Korzh, V., and Fjose, A. (1991) Expression of the zebrafish paired box gene pax [zf-b] during early neurogenesis. Development 113, 1193–1206.PubMedGoogle Scholar
  22. 22.
    Krauss, S., Johansen, T., Korzh, V., Moens, U., Ericson, J. U., and Fjose, A. (1991) Expression pattern of zebrafish pax genes suggests a role in early brain regionaliza-tion. Nature 353, 267–270.CrossRefPubMedGoogle Scholar
  23. 23.
    Barth, K. A. and Wilson, S. W. (1995) Expression of zebrafish nk2.2 is influenced by the sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755–1768.PubMedGoogle Scholar
  24. 24.
    Krauss, S., Concordet, J.-P., and Ingham, P. W. (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75, 1431–1444.CrossRefPubMedGoogle Scholar
  25. 25.
    Aikimenko, M.-A., Ekker, M., Wegner, J., Lin, W., and Westerfield, M. (1994) Combinatorial expression of three zebrafish genes related to distal-less: Part of a homeobox gene code for the head. J. Neurosci. 14, 3474–3486.Google Scholar
  26. 26.
    Krauss, S., Korzh, V., Fjose, A., and Johansen, T. (1992) Expression of 4 zebrafish wnt-related genes during embryogenesis. Development 116, 249–259.PubMedGoogle Scholar
  27. 27.
    Ekker, M., Wegner, J., Akimenko, M. A., and Westerfield, M. (1992) Coordi nate embryonic expression of 3 zebrafish engrailed genes. Development 116, 1001–1010.PubMedGoogle Scholar
  28. 28.
    Oxtoby, E. and Jowett, T. (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development Nucleic Acids Res. 21, 1087–1095.CrossRefPubMedGoogle Scholar
  29. 29.
    Xu, Q. L., Holder, N., Patient, R., and Wilson, S. W. (1994). Spatially regulated expression of 3 receptor tyrosine kinase genes during gastrulation in the zebrafish. Development 120, 287–299.PubMedGoogle Scholar
  30. 30.
    Hauptmann, G. and Gerster, T. (1995) Pou-2—a zebrafish gene active during cleavage stages and in the early hindbrain. Mech. Devel. 51, 127–138.CrossRefGoogle Scholar
  31. 31.
    Strahle, U., Blader, P., Henrique, D., and Ingham, P. W. (1993) Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Devel. 7, 1436–1446.CrossRefPubMedGoogle Scholar
  32. 32.
    Yan, Y. L., Hatta, K., Riggleman, B., and Postlethwait, J. H. (1995) Expression of a type-II collagen gene in the zebrafish embryonic axis. Dev. Dyn. 203, 363–376.PubMedGoogle Scholar
  33. 33.
    Trevarrow, B., Marks, D. L., and Kimmel, C. B. (1990) Organization of hindbrain segments in the zebrafish embryo. Neuron 4, 669–679.CrossRefPubMedGoogle Scholar
  34. 34.
    Talbot, W. S., Trevarrow, B., Halpern, M. E., Melby, A. E., Farr, G., Postlethwait, J. H., Jowett, T., Kimmel, C. B., and Kimelman, D. (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150–157.CrossRefPubMedGoogle Scholar
  35. 35.
    Stachel, S. E., Grunwald, D. J., and Myers, P. Z. (1993) Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274.PubMedGoogle Scholar
  36. 36.
    Schulte-Merker, S., Hammerschmidt, M., Beuchle, D., Cho, K. W., DeRobertis, E. M., and Nusslein-Volhard, C. (1994) Expression of zebrafish goosecoid and no tail gene-products in wild-type and mutant no tail embryos. Development 120, 843–852.PubMedGoogle Scholar
  37. 37.
    Thisse, C., Thisse, B., Schilling, T. F., and Postlethwait, T. F. (1993) Structure of the zebrafish snail 1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215.PubMedGoogle Scholar
  38. 38.
    Riggleman, B. and Grunwald, D. J. (1991) Molecular cloning and analysis of three developmentally regulated genes in zebrafish N-Cam, myogenin and twist. J. Cell Biol. 115, 146.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • D. Currie Peter
    • 1
  • F. Schilling Thomas
    • 2
  • W. Ingham Philip
    • 3
  1. 1.Victor Chang Cardiac Research InstituteVictor Chang Cardiac Research InstituteSydneyAustralia
  2. 2.Department of Developmental and Cell BiologyUniversity of California, IrvineCaliforniaUSA
  3. 3.Centre for Developmental GeneticsUniversity of SheffieldSheffieldUK

Personalised recommendations