The Zebrafish

An Overview of Its Early Development
  • Nigel Holder
  • Qiling Xu
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. The Emergence of the Zebrafish as a Model System for the Study of Vertebrate Development

During the past 10 yr, the zebrafish has emerged as an important model system for the study of vertebrate development. This is primarily because of the promise of the system for developmental genetic studies. but, in addition to the necessary features of an animal that can be used for genetics, there are a range of experimental approaches that have proven successful in studies of tissue interactions, gene function, and early neural development. Such methods include embryonic cell transplantation, the analysis of gene function by injection of RNA or antibodies into the fertilized egg, and the analysis of identified neurons in the developing central nervous system. The object of this chapter is to outline the main features of early zebrafish development and to provide details of the methods for injecting the fertilized egg with nucleic acid or protein.

It is important to point out that analysis of...


Vertebrate Development Blastula Stage Otic Vesicle Haploid Embryo Zebrafish Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kimmel, C. B., Warga, R., and Schilling, T. (1990) Origin and organisation of the zebrafish fate map. Development 108, 581 – 594.PubMedGoogle Scholar
  2. 2.
    Woo, K. and Fraser, S. E. (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121, 2595 – 2609.PubMedGoogle Scholar
  3. 3.
    Shih, J. and Fraser, S. E. (1995) The distribution of tissue progenitors within the shield region of the zebrafish gastrula. Development 121, 2755 – 2765.PubMedGoogle Scholar
  4. 4.
    Strehlow, D. and Gilbert, W. (1993) A fate map for the first cleavage stages of the zebrafish. Nature 361, 451 – 453.CrossRefGoogle Scholar
  5. 5.
    Wilson, E., Helde, K., and Grunwald, D. (1993) Something's fishy here rethinking cell movements and cell fate in the zebrafish embryo. Trends Genet. 10, 348 – 352.CrossRefGoogle Scholar
  6. 6.
    Kimmel, C. B. and Warga, R. (1986) Tissue specific cell lineages originate in the gastrula of the zebrafish. Science 231, 365 – 368.CrossRefPubMedGoogle Scholar
  7. 7.
    Kimmel, C. B. and Warga, R. (1988) Cell lineage and developmental potential of cells in the zebrafish embryo. Trends Genet. 4, 68 – 74.CrossRefPubMedGoogle Scholar
  8. 8.
    Helde, K., Wilson, E., Cretekos, C., and Grunwald, D. (1994) Contribution of early cells to the fate map of the zebrafish gastrula. Science 265, 517 – 520.CrossRefPubMedGoogle Scholar
  9. 9.
    Abdelilah, S., Solnica-Krezel, L., Stainier, D., and Driever, W. (1994) Implications for dorsoventral axis determination from the zebrafish mutant janus. Nature 370, 468 – 471.CrossRefPubMedGoogle Scholar
  10. 10.
    Wittbrodt, J. and Rosa, F. (1994) Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: the role of maternal activin. Genes Dev. 8, 1448 – 1462.CrossRefPubMedGoogle Scholar
  11. 11.
    Kimmel, C. B. (1989) Genetics and early development of the zebrafish. Trends Genet. 5, 283 – 288.CrossRefPubMedGoogle Scholar
  12. 12.
    Kimmel, C. B., Kane, D., Walker, C., Warga, R., and Rothman, M. (1989) A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337, 358 – 362.CrossRefPubMedGoogle Scholar
  13. 13.
    Hatta, K., Kimmel, C. B., Ho, R., and Walker, C. (1991) The cyclops mutation blocks specification of the floor plate of the zebrafish CNS. Nature 350, 339 – 341.CrossRefPubMedGoogle Scholar
  14. 14.
    Schulte-Merker, S., van Eeden, F., Halpern, M., Kimmel, C., and Nusslein Volhard, C. (1994) No tail (ntl) is the zebrafish homologue of the mouse T (brachyury) gene. Development 120, 1009 – 1015.PubMedGoogle Scholar
  15. 15.
    Griffin, K., Amacher, S., Kimmel, C., and Kimelman, D. (1998) Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development 125, 3379 – 3388.PubMedGoogle Scholar
  16. 16.
    Sampath, K., Rubinstein, A., Cheng, A., Liang, J., Fekany, K., Solnica-Krezel, L., Korzh, V., Halpern, M., and Wright, C. (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185 – 189.CrossRefPubMedGoogle Scholar
  17. 17.
    Talbot, W., Trevarrow, B., Halpern, M., Melby, A. E., Farr, G., Postlethwait, J. H., et al. (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150 – 157.CrossRefPubMedGoogle Scholar
  18. 18.
    Reifers, F., Bohli, H., Walsh, E., Crossley, P., Stainer, D., and Brand, M. (1998) Fgf 8 is mutated in zebrafish acerebellar mutants and is required for maintenance of midbrain-hindbrain devlopment and somitogenesis. Development 125, 2381 – 2395.PubMedGoogle Scholar
  19. 19.
    Haffter, P., Granato, M., Brand, M., Mullins, M. C., Hammerschmidt, M., Kane, D. A., Odenthal, J., et al. (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1 – 36.PubMedGoogle Scholar
  20. 20.
    Postlethwait, J. H., Johnson, S., Midson, C., Talbot, W., Gates, M., Ballinger, E., et al. (1994) A genetic linkage map for the zebrafish. Science 264, 699 – 702.CrossRefPubMedGoogle Scholar
  21. 21.
    Postlethwait, J. H. and Talbot, W. (1997) Zebrafish genomics: from mutants to genes. Trends Genet. 13, 183 – 190.CrossRefPubMedGoogle Scholar
  22. 22.
    Postlethwait, J., et al. (1998) Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345 – 349.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang, J., Talbot, W., and Shier, A. (1998) Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241 – 251.CrossRefPubMedGoogle Scholar
  24. 24.
    Eisen, J. (1991) Developmental neurobiology of the zebrafish. J. Neurosci. 11, 311 – 317.PubMedGoogle Scholar
  25. 25.
    Eisen, J. (1991) Determination of primary motoneuron identity in developing zebrafish emblyos. Science 252, 569 – 572.CrossRefPubMedGoogle Scholar
  26. 26.
    Myers, P., Eisen, J., and Westerfield, M. (1986) Development and axon outgrowth of identified motoneurons in the zebrafish. J. Neurosci. 6, 227, 228.Google Scholar
  27. 27.
    Mendelson, B. (1986) Development of reticulospinal neurons of the zebrafish. I Time of origin. J. Comp. Neurol. 251, 160 – 171.CrossRefPubMedGoogle Scholar
  28. 28.
    Mendelson, B. (1986) Development of reticulospinal neurons of the zebrafish. II. Early axon outgrowth and cell body position. J. Comp. Neurol. 251, 172 – 184.CrossRefPubMedGoogle Scholar
  29. 29.
    Kimmel, C. B., Metcalfe, W., and Schabtach, E. (1985) T reticular interneurons: a class of serially repeating cells in the zebrafish hindbrain. J. Comp. Neurol. 233, 365 – 376.CrossRefPubMedGoogle Scholar
  30. 30.
    Hill, J., Clarke, J. D. W., Vargesson, N., Jowett, T., and Holder, N. (1995) Exogenous retinoic acid causes alterations in the development of the hindbrain and midbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech. Devel 50, 3 – 16.CrossRefGoogle Scholar
  31. 31.
    Gaiano, N., Amsterdam, A., Kawakami, K., Allende, M., Becker, T., and Hopkins, N. (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383, 829 – 832.CrossRefPubMedGoogle Scholar
  32. 32.
    Kimmel, C., Ballard, W., Kimmel, S., Ullmann, B., and Schilling, T. (1995) Stages of embryonic development of the zebrafish. Develop. Dyn. 203, 253 – 310.Google Scholar
  33. 33.
    Westerfield, M. (1995) The Zebrafish Book, 3rd ed. University of Oregon Press, Eugene, OR.Google Scholar
  34. 34.
    Kane, D. and Kimmel, C. (1993) The zebrafish midblastula transition. Development 119, 447 – 456.PubMedGoogle Scholar
  35. 35.
    Warga, R. and Kimmel, C. (1990) Cell movements during epiboly and gastrulation in the zebrafish. Development 108, 569 – 580.PubMedGoogle Scholar
  36. 36.
    Papan, C. and Campos-Ortega, J. (1994) On the formation of the neural keel and neural tube in the zebrafish Danio rerio. Roux Archiv Dev Biol. 203, 178 – 186.CrossRefGoogle Scholar
  37. 37.
    Metcalfe, W. (1985) Sensory neuronal growth cones comigrate with posterior lateral line primordial cells in the zebrafish. J. Comp Neurol. 238, 218 – 224.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Nigel Holder
    • 1
  • Qiling Xu
    • 2
  1. 1.Deceased, Department of Anatomy and Developmental BiologyUniversity CollegeLondonUK
  2. 2.National Institute for Medical Research, Mill HillLondonUK

Personalised recommendations