Advertisement

Gene Transfer in Avian Embryos Using Replication-Competent Retroviruses

  • Cairine Logan
  • Philippa Francis-West
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

A series of replication-competent, avian-specific retroviral vectors, known as RCAS or RCAN, were developed by Hughes et al. (1) and used successfully by a rapidly expanding number of groups to assess gene function directly in ovo (e.g.,(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)). These proviral vectors are derived from the Rous sarcoma virus (RSV) and contain a unique ClaI restriction site in place of the region normally encoding the src oncogene, into which foreign DNA fragments of up to approximately 2.4 kb can be inserted. An E. coli plasmid backbone allows the gene of choice to be introduced by standard subcloning techniques, while retention of the viral long terminal repeat (LTR) sequences together with sequences encoding the viral gag, pol, and env genes facilitates viral replication and transmission. RCAN is a variant of RCAS, from which the splice acceptor immediately upstream of the ClaI site has been removed, preventing translation of the inserted gene,...

Keywords

Long Terminal Repeat Rous Sarcoma Virus Chicken Serum HEPES Buffer Saline Plastic Centrifuge Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hughes SH, Greenhouse JJ, Petropoulos CJ, Sutrave P (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol 61:3004 – 3012.PubMedGoogle Scholar
  2. 2.
    Morgan BA, Izpisúa-Belmonte J-C, Duboule D, Tabin CJ (1992) Targeted misex-pression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358:236 – 239.CrossRefPubMedGoogle Scholar
  3. 3.
    Riddle RD, Johnson RL, Laufer E, Tabin C (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75:1401 – 1416.CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson RL, Laufer E, Riddle RD, Tabin C (1994) Ectopic expression of sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79:1165 – 1173.CrossRefPubMedGoogle Scholar
  5. 5.
    Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C (1995) Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83:631 – 640.CrossRefPubMedGoogle Scholar
  6. 6.
    Vogel A, Rodriguez C, Warnken W, Izpisúa-Belmonte JC (1995) Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378:716 – 720.CrossRefPubMedGoogle Scholar
  7. 7.
    Yang Y, Niswander L (1995) Interaction between the signalling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposte-rior patterning. Cell 80:939 – 947.CrossRefPubMedGoogle Scholar
  8. 8.
    Itasaki N, Nakamura H (1996) A role for gradient en expression in positional specification of the optic tectum. Neuron 16:55 – 62.CrossRefPubMedGoogle Scholar
  9. 9.
    Logan C, Wizenmann A, Drescher U, Monschau B, Bonhoeffer F, Lumsden A (1996) Rostral optic tectum acquires caudal characteristics following ectopic engrailed expression. Curr Biol 6:1006 – 1014.CrossRefPubMedGoogle Scholar
  10. 10.
    Friedman, G, O'Leary D (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J Neurosci 16:5498 – 5509.PubMedGoogle Scholar
  11. 11.
    Yuasa J, Hirano S, Yamagata M, Noda M (1996) Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382:632 – 635.CrossRefPubMedGoogle Scholar
  12. 12.
    Rodriguez-Esteban C, Schwabe JWR, De La Peña J, Foys B, Eshelman B, Izpisúa-Belmonte JC (1997) Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature 386:360 – 366.CrossRefPubMedGoogle Scholar
  13. 13.
    Laufer E, Dahn R, Orozco OE, Yeo C-Y, Pisenti J, Henrique D, Abbott UK, Fallon JF, Tabin C (1997) Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature 386:366 – 373.CrossRefPubMedGoogle Scholar
  14. 14.
    Logan C, Hornbruch A, Campbell I, Lumsden A (1997) The role of engrailed in establishing the dorsoventral axis of the chick limb. Development 124:2317 – 2324.PubMedGoogle Scholar
  15. 15.
    Fekete DM, Cepko CL (1993) Replication-competent retroviral vectors encoding alkaline phosphatase reveal spatial restriction of viral gene expression/transduction in the chick embryo. Mol Cell Biol 13:2604 – 2613.PubMedGoogle Scholar
  16. 16.
    Barsov EV, Hughes SH (1996) Gene transfer into mammalian cells by a Rous sarcoma virus-based retroviral vector with the host range of the amphotropic murine leukemia virus. J Virol 70:3922 – 3929.PubMedGoogle Scholar
  17. 17.
    Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1:53 – 62.CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis BC, Klimstra DS, Varmus HE (2003) The c-myc and PyMT oncogenes induce different tumor types in a somatic mouse model for pancreatic cancer. Genes Dev 17:3127 – 3138.CrossRefPubMedGoogle Scholar
  19. 19.
    Morgan BA, Fekete DM (1995) Manipulating gene expression with replication competent retroviruses. Methods Cell Bio. 51:185 – 218.CrossRefGoogle Scholar
  20. 20.
    Petropoulos CJ, Hughes SH (1991) Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol 65:3728 – 3737.PubMedGoogle Scholar
  21. 21.
    Potts WM, Olsen M, Boettiger D, Vogt VM (1987) Epitope mapping of monoclonal antibodies to gag protein p19 of avian sarcoma and leukaemia viruses. J Gen Virol 68:3177 – 3182.CrossRefPubMedGoogle Scholar
  22. 22.
    Moscovici C, Moscovici MG, Jimenez H, Lai MM, Hayman MJ, Vogt PK (1977) Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11:95 – 103.CrossRefPubMedGoogle Scholar
  23. 23.
    Homburger SA, Fekete DM (1996) High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses. Dev Dyn 206:112 – 120.CrossRefPubMedGoogle Scholar
  24. 24.
    Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for the human c-myc oncogene product. Mol Cell Biol 75:3610 – 3616.Google Scholar
  25. 25.
    Hopp TP, Prickett KS, Price V, Libby RT, March CJ, Cerretti P, Urdal DL, Conlon PJ. (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Biotechnology 6:1205 – 1210.Google Scholar
  26. 26.
    Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK (1998) The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248:295 – 304.CrossRefPubMedGoogle Scholar
  27. 27.
    Schaefer-Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN, Federspiel MJ, Hughes SH (1998) The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology 248:305 – 311.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Cairine Logan
    • 1
  • Philippa Francis-West
    • 2
  1. 1.Department of Cell Biology and AnatomyUniversity of CalgaryCalgaryCanada
  2. 2.Department of Craniofacial DevelopmentKing's College LondonLondonUK

Personalised recommendations