Quail—Chick Chimeras

  • Marie-Aimée Teillet
  • Catherine Ziller
  • Nicole M. Le Douarin
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

The understanding of several mechanisms that are essential for embryonic development has greatly benefited from cell-marking techniques that allow tracing of definite cells and their progeny, and thus, the study of their behavior and fate. A cell marker must be precise and stable; it must not interfere with normal development. The quail—chick labeling technique meets these requirements perfectly.

The principle of the method ( 1) is based on the observation that in all embryonic and adult cells of the quail ( Coturnix coturnix japonica), the heterochromatin is condensed in one (sometimes two or more, depending on the cell types) large mass(es) associated with the nucleolus, thus making this organelle strongly stained after DNA staining, e.g., the Feulgen and Rossenbeck staining ( 2). When quail cells are combined with cells of the chick ( Gallus gallus) which possess, like most of the animal cells, only small chromocenters dispersed in the nucleoplasm, they are readily...


Neural Tube Neural Crest Cell Tyrode Solution Donor Embryo Brain Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Marcelle Gendreau and Charmaine Herberts for reference filing, Fran殩se Viala for photographic work, and Sophie Gournet and Hélène San Clemente for line drawings.


  1. 1.
    Le Douarin, N. (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans les recherches sur les interactions tissulaires et les migrations cel-lulaires au cours de l'ontogenèse. Bull. Biol. Fr. Belg. 103, 435–452.PubMedGoogle Scholar
  2. 2.
    Feulgen, R. and Rossenbeck, H. (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure von Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe-Seyler's Z. Physiol. Chem. 135, 203–248.Google Scholar
  3. 3.
    Le Douarin, N. (1982) The Neural Crest. Cambridge University Press, Cambridge.Google Scholar
  4. 4.
    Le Douarin, N. M. (1993) Embryonic neural chimaeras in the study of brain development. Trends Neurosci. 16, 64–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Catala, M., Teillet, M.-A., De Robertis, E. M., and Le Douarin, N. M. (1996) A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122, 2599–2610.PubMedGoogle Scholar
  6. 6.
    Kinutani, M., Coltey, M., and Le Douarin, N. M. (1986) Postnatal development of a demyelinating disease in avian spinal cord chimeras. Cell 45, 307–314.CrossRefPubMedGoogle Scholar
  7. 7.
    Ohki, H., Martin, C., Corbel, C., Coltey, M., and Le Douarin, N. M. (1987) Tolerance induced by thymic epithelial grafts in birds. Science 237, 1032–1035.CrossRefPubMedGoogle Scholar
  8. 8.
    Balaban, E., Teillet, M.-A., and Le Douarin, N. M. (1988) Application of the quail— chick chimera system to the study of brain development and behavior. Science 241, 1339–1342.CrossRefPubMedGoogle Scholar
  9. 9.
    Le Douarin, N. M. and Teillet, M.-A. (1974) Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev. Biol. 41, 162–184.CrossRefPubMedGoogle Scholar
  10. 10.
    Le Douarin, N. M., Dieterlen-Lièvre, F., and Oliver, P. D. (1984) Ontogeny of primary lymphoid organs and lymphoid stem cells. Am. J. Anat. 170, 261–299.CrossRefPubMedGoogle Scholar
  11. 11.
    Hamburger, V. and Hamilton, H. L. (1951) A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.CrossRefGoogle Scholar
  12. 12.
    Zacchei, A. M. (1961) Lo sviluppo embrionale della quaglia giapponese (Coturnix coturnix japonica, T. e S.). Arch. Ital. Anat. Embriol. 66, 36–62.PubMedGoogle Scholar
  13. 13.
    Gabe, M. (1968) Techniques Histologiques. Masson, Paris.Google Scholar
  14. 14.
    Teillet, M.-A., Kalcheim, C., and Le Douarin, N. M. (1987) Formation of the dorsal root ganglia in the avian embryo: segmental origin and migratory behavior of neural crest progenitor cells. Dev. Biol. 120, 329–347.CrossRefPubMedGoogle Scholar
  15. 15.
    Cameron-Curry, P. and Le Douarin, N. M. (1995) Oligodendrocyte precursors originate from both the dorsal and the ventral parts of the spinal cord. Neuron 15, 1299–1310.CrossRefPubMedGoogle Scholar
  16. 16.
    Hallonet, M. E. R., Teillet, M.-A., and Le Douarin, N. M. (1990) A new approach to the development of the cerebellum provided by the quail—chick marker system. Development 108, 19–31.PubMedGoogle Scholar
  17. 17.
    Tan, K. and Le Douarin, N. M. (1991) Development of the nuclei and cell migration in the medulla oblongata. Application of the quail—chick chimera system. Anat. Embryol. 183, 321–343.CrossRefPubMedGoogle Scholar
  18. 18.
    Teillet, M.-A., Naquet, R., Le Gal La Salle, G., Merat, P., Schuler, B., and Le Douarin, N. M. (1991) Transfer of genetic epilepsy by embryonic brain grafts in the chicken. Proc. Natl. Acad. Sci. USA 88, 6966–6970.CrossRefPubMedGoogle Scholar
  19. 19.
    Batini, C., Teillet, M.-A., Naquet, R., and Le Douarin, N. M. (1996) Brain chimeras in birds: application to the study of a genetic form of reflex epilepsy. Trends Neurosci. 19, 246–252.CrossRefPubMedGoogle Scholar
  20. 20.
    Alvarado-Mallart, R. M. and Sotelo, C. (1984) Homotopic and heterotopic transplantations of quail tectal primordia in chick embryos: organization of the retinote-ctal projections in the chimeric embryos. Dev. Biol. 103, 378–398.CrossRefPubMedGoogle Scholar
  21. 21.
    Martinez, S. and Alvarado-Mallart, R. M. (1989) Rostral cerebellum originates from the caudal portion of the so-called “mesencephalic” vesicle: A study using chick/quail chimeras. Eur. J. Neurosci. 1, 549–560.CrossRefPubMedGoogle Scholar
  22. 22.
    Hallonet, M. E. R. and Le Douarin, N. M. (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail—chick chimaeras. Eur. J. Neurosci. 5, 1145–1155.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakamura, H. (1990) Do CNS anlagen have plasticity in differentiation? Analysis in quail—chick chimera. Brain Res. 511, 122–128.CrossRefPubMedGoogle Scholar
  24. 24.
    Martinez, S. and Alvarado-Mallart, R. M. (1990) Expression of the homeobox Chick-en gene in chick-quail chimeras with inverted mes-metencephalic grafts. Dev. Biol. 139, 432–436.CrossRefPubMedGoogle Scholar
  25. 25.
    Martinez, S., Wassef, M., and Alvarado-Mallart, R. M. (1991) Induction of a mes-encephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981.CrossRefGoogle Scholar
  26. 26.
    Couly, G. F. and Le Douarin, N. M. (1985) Mapping of the early neural primordium in quail—chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev. Biol. 110, 422–439.CrossRefPubMedGoogle Scholar
  27. 27.
    Couly, G. F. and Le Douarin, N. M. (1987) Mapping of the early neural primor-dium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev. Biol. 120, 198–214.CrossRefPubMedGoogle Scholar
  28. 28.
    Couly, G. and Le Douarin, N. M. (1988) The fate map of the cephalic neural pri-mordium at the presomitic to the 3-somite stage in the avian embryo. Development 103(Suppl.), 101–113.PubMedGoogle Scholar
  29. 29.
    Couly, G. F., Coltey, P. M. and Le Douarin, N. M. (1993) The triple origin of skull in higher vertebrates: A study in quail-chick chimeras. Development 117, 409–429.PubMedGoogle Scholar
  30. 30.
    Grapin-Botton, A., Bonnin, M.-A., McNaughton, L.A., Krumlauf, R., and Le Douarin, N. M. (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121, 2707–2721.PubMedGoogle Scholar
  31. 31.
    Grapin-Botton, A., Bonnin, M.-A., and Le Douarin, N. M. (1997) Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 124, 849–859.PubMedGoogle Scholar
  32. 32.
    Couly, G., Grapin-Botton, A., Coltey, P., and Le Douarin, N. M. (1996) The regeneration of the cephalic neural crest, a problem revisited: the regenerating cells originate from the contralateral or from the anterior and posterior neural folds. Development 122, 3393–3407.PubMedGoogle Scholar
  33. 33.
    Lance-Jones, C. C. and Lagenaur, C. F. (1987) A new marker for identifying quail cells in embryonic avian chimeras: a quail-specific antiserum. J. Histochem. Cytochem. 35, 771–780.PubMedGoogle Scholar
  34. 34.
    Abo, T. and Balch, C. M. (1981) A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J. Immunol. 127, 1024–1029.PubMedGoogle Scholar
  35. 35.
    Rong, P. M., Ziller, C., Pena-Melian, A., and Le Douarin, N. M. (1987) A monoclonal antibody specific for avian early myogenic cells and differentiated muscle. Dev. Biol. 122, 338–353.CrossRefPubMedGoogle Scholar
  36. 36.
    Péault, B. M., Thiery, J.-P., and Le Douarin, N. M. (1983) Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc. Natl. Acad. Sci. USA 80, 2976–2980.CrossRefPubMedGoogle Scholar
  37. 37.
    Pardanaud, L., Altmann, C., Kitos, P., Dieterlen-Lièvre, F., and Buck, C. A. (1987) Vasculogenesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells. Development 100, 339–349.PubMedGoogle Scholar
  38. 38.
    Takagi, S., Toshiaki, T., Kinutani, M., and Fugisawa, H. (1989) Monoclonal antibodies against specific antigens in the chick central nervous system: Putative application as a transplantation marker in the quail—chick chimaera. J. Histochem. Cytochem. 37, 177–184.PubMedGoogle Scholar
  39. 39.
    Tanaka, H., Kinutani, M., Agata, A., Takashima, Y., and Obata, K. (1990) Path-finding during spinal tract formation in quail—chick chimera analysed by species specific monoclonal antibodies. Development 110, 565–571.PubMedGoogle Scholar
  40. 40.
    Izpisúa-Belmonte, J. C., De Robertis, E. M., Storey, K. G., and Stern, C. D. (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74, 645–659.CrossRefPubMedGoogle Scholar
  41. 41.
    Dulac, C., Tropak, M. B., Cameron-Curry, P., Rossier, J., Marshak, D. R., Roder, J., and Le Douarin, N. M. (1992) Molecular characterization of the Schwann cell myelin protein, SMP: structural similarities within the immunoglobulin super-family. Neuron 8, 323–334.CrossRefPubMedGoogle Scholar
  42. 42.
    Bally-Cuif, L. and Wassef, M. (1994) Ectopic induction and reorganization of Wnt-1 expression in quail-chick chimeras. Development 120, 3379–3394.PubMedGoogle Scholar
  43. 43.
    Conrad, G. W., Bee, J. A., Roche, S. M., and Teillet, M.-A. (1993) Fabrication of microscalpels by electrolysis of tungsten wire in a meniscus. J. Neurosci. Methods 50, 123–127.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Marie-Aimée Teillet
    • 1
  • Catherine Ziller
    • 1
  • Nicole M. Le Douarin
    • 1
  1. 1.Instituit d'Embryologie Cellulaire et MoleculaireCollege de FranceNogent-sur-MarneFrance

Personalised recommendations