Advertisement

Mouse Primordial Germ Cells

Isolation and In Vitro Culture
  • Patricia A. Labosky
  • Brigid L. M. Hogan
Part of the METHODS IN MOLECULAR BIOLOGY™ book series (MIMB, volume 461)

1. Introduction

Since the original publication of this chapter on the manipulation of primordial germ cells (PGCs) into embryonic germ (EG) cell lines, the field has progressed considerably. Perhaps the most exciting advance has been the derivation of pluripotent human EG cell lines, using methods similar to those outlined here (1). Cells derived from these human EG lines can stimulate partial motor recovery in rats paralyzed by viral-induced motor neuron injury (2). This provides an exciting example of the therapeutic potential of human stem cell research. However, it is likely that the effect is indirect, due to the enhancement of host neuron survival and function by growth factors produced by the grafted cells. Another advance has been the use of EG lines to follow the process of erasure of genetic imprinting that normally occurs during the migration of PGCs to the gonad. However, caution is again needed, since EG cells grown in vitromay not accurately reflect all the imprinting...

Keywords

Leukemia Inhibitory Factor Stem Cell Factor Primordial Germ Cell Secondary Culture Genital Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blu-menthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95(23): 13726–13731.CrossRefPubMedGoogle Scholar
  2. 2.
    Kerr DA, Llado J, Shamblott MJ, Maragakis NJ, Irani DN, Crawford TO, Krishnan C, Dike S, Gearhart JD, Rothstein JD (2003) Human embryonic germ cell derivatives facilitate motor recovery of rats with diffuse motor neuron injury. J Neurosci 23(12): 5131–5140.PubMedGoogle Scholar
  3. 3.
    Durcova-Hills G, Burgoyne P, McLaren A (2004) Analysis of sex differences in EGC imprinting. Dev Biol 268(1): 105–110.CrossRefPubMedGoogle Scholar
  4. 4.
    Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418(6895): 293–300.CrossRefPubMedGoogle Scholar
  5. 5.
    Sharov AA, Piao Y, Matoba R, Dudekula DB, Qian Y, VanBuren V, Falco G, Martin PR, Stagg CA, Bassey UC, Wang Y, Carter MG, Hamatani T, Aiba K, Akutsu H, Sharova L, Tanaka TS, Kimber WL, Yoshikawa T, Jaradat SA, Pantano S, Nagaraja R, Boheler KR, Taub D, Hodes RJ, Longo DL, Schlessinger D, Keller J, Klotz E, Kelsoe G, Umezawa A, Vescovi AL, Rossant J, Kunath T, Hogan BL, Curci A, D'Urso M, Kelso J, Hide W, Ko MS (2003) Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 1(3):E74.CrossRefPubMedGoogle Scholar
  6. 6.
    Shim H, Gutierrez-Adan A, Chen LR, BonDurant RH, Behboodi E, Anderson GB (1997) Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57(5): 1089–1095.CrossRefPubMedGoogle Scholar
  7. 7.
    Piedrahita JA, Moore K, Oetama B, Lee CK, Scales N, Ramsoondar J, Bazer FW, Ott T (1998) Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod 58(5): 1321–1329.CrossRefPubMedGoogle Scholar
  8. 8.
    Tsung HC, Du ZW, Rui R, Li XL, Bao LP, Wu J, Bao SM, ao Z (2003) The culture and establishment of embryonic germ (EG) cell lines from Chinese mini swine. Cell Res 13(3): 195–202.CrossRefPubMedGoogle Scholar
  9. 9.
    Rui R, Shim H, Moyer AL, Anderson DL, Penedo CT, Rowe JD, BonDurant RH, Anderson GB (2004) Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology 61(7–8): 1225–12-35.CrossRefPubMedGoogle Scholar
  10. 10.
    Dolci S, WilliamsDE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature. 352(6338): 809–811.CrossRefPubMedGoogle Scholar
  11. 11.
    Matsui Y, Toksoz D, Nishikawa S, Williams D, Zsebo K, Hogan BL (1991) Effect of Steel factor and leukaemia inhibitory factor on murine primordial germ cells in culture. Nature 353(6346): 750–752.CrossRefPubMedGoogle Scholar
  12. 12.
    Godin I, Deed R, Cooke J, Zsebo K, Dexter M, Wyli CC (1991) Effects of the Steel gene product on mouse primordial germ cells in culture. Nature 352(6338): 807–809.CrossRefPubMedGoogle Scholar
  13. 13.
    Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM (1988) Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336(6200): 684–687.CrossRefPubMedGoogle Scholar
  14. 14.
    Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 336(6200): 688–690.CrossRefPubMedGoogle Scholar
  15. 15.
    Pease S, Williams RL (1990) Formation of germ-line chimeras from embryonic stem cells maintained with recombinant leukemia inhibitory factor. Exp Cell Res 190(2): 209–211.CrossRefPubMedGoogle Scholar
  16. 16.
    Cheng L, Gearing DP, White LS, Compton DL, K. Schooley K, Donovan PJ (1994) Role of leukemia inhibitory factor and its receptor in mouse primordial germ cell growth. Development 120(11): 3145–3153.PubMedGoogle Scholar
  17. 17.
    Koshimizu U, Taga T, Watanabe M, Saito M, Shirayoshi Y, Kishimoto T, Nakat-suji N (1996) Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development 122(4):1235–1242.PubMedGoogle Scholar
  18. 18.
    Kawase E, Yamamoto H, Hashimoto K, Nakatsuji N (1994) Tumor necrosis factor-alpha (TNF-alpha) stimulates proliferation of mouse primordial germ cells in culture. Dev Biol 161(1):91–95.CrossRefPubMedGoogle Scholar
  19. 19.
    Cooke JE, Heasman J, Wylie CC (1996) The role of interleukin-4 in the regulation of mouse primordial germ cell numbers. Dev Biol 174(1):14–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Koshimizu U, Watanabe M, Nakatsuji N (1995) Retinoic acid is a potent growth activator of mouse primordial germ cells in vitro. Dev Biol 168(2):683–685.CrossRefPubMedGoogle Scholar
  21. 21.
    De Felici M, Dolci S, Pesce M (1993) Proliferation of mouse primordial germ cells in vitro: a key role for cAMP. Dev Biol 157(1):277–280.CrossRefPubMedGoogle Scholar
  22. 22.
    Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70(5):841–847.CrossRefPubMedGoogle Scholar
  23. 23.
    Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359(6395):550–551.CrossRefPubMedGoogle Scholar
  24. 24.
    Labosky PA, D.P. Barlow DP, and B.L. Hogan BL(1994) Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines. Development 120(11):3197–3204.PubMedGoogle Scholar
  25. 25.
    Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168; discussion 168–178.PubMedGoogle Scholar
  26. 26.
    Stewart CL, Gadi I, Bhatt H (1994) Stem cells from primordial germ cells can reenter the germ line. Dev Biol 161(2):626–628.CrossRefPubMedGoogle Scholar
  27. 27.
    Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110(2):521–528.PubMedGoogle Scholar
  28. 28.
    Gomperts M, Garcia-Castro M, Wylie C, Heasman J (1994) Interactions between primordial germ cells play a role in their migration in mouse embryos. Development 120(1):135–141.PubMedGoogle Scholar
  29. 29.
    Nagy, A, Gertsenstein M, Vintersten K, Behringer R (2003) Manipulating the mouse embryo: a laboratory manual (3rd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y.Google Scholar
  30. 30.
    Donovan PJ (1994) Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol. 29:189–225.CrossRefPubMedGoogle Scholar
  31. 31.
    Nagamine CM, Chan KM, Kozak CA, Lau YF (1989) Chromosome mapping and expression of a putative testis-determining gene in mouse. Science 243(4887): 80–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual (3rd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Patricia A. Labosky
    • 1
  • Brigid L. M. Hogan
    • 2
  1. 1.Center for Stem Cell Biology, Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleUSA
  2. 2.Cell and Molecular Biology ProgramDuke UniversityDurhamUSA

Personalised recommendations