Skip to main content

Recognition Imaging of Chromatin and Chromatin-Remodeling Complexes in the Atomic Force Microscope

  • Protocol
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 464))

Abstract

Atomic force microscopy (AFM) can directly visualize single molecules in solution, which makes it an extremely powerful technique for carrying out studies of biological complexes and the processes in which they are involved. A recent development, called Recognition Imaging, allows the identification of a specific type of protein in solution AFM images, a capability that greatly enhances the power of the AFM approach for studies of complex biological materials. In this technique, an antibody against the protein of interest is attached to an AFM tip. Scanning a sample with this tip generates a typical topographic image simultaneously and in exact spatial registration with a “recognition image.” The latter identifies the locations of antibody-antigen binding events and thus the locations of the protein of interest in the image field. The recognition image can be electronically superimposed on the topographic image, providing a very accurate map of specific protein locations in the topographic image. This technique has been mainly used in in vitro studies of biological complexes and reconstituted chromatin, but has great potential for studying chromatin and protein complexes isolated from nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindsay, S.M. (2000) The scanning probe microscope in biology. In: Scanning Probe Microscopy, Techniques and Applications, 2nd edn (Bonnell, D., ed), John Wiley, New York, NY, pp. 289-336

    Google Scholar 

  2. Yip, C. M. (2001) Atomic force microscopy of intermolecular interactions. Curr. Opin. Struct. Biol. 11, 567-572

    Article  PubMed  CAS  Google Scholar 

  3. Frederix, P., Akiyama, T., Staufer, U., Gerber, C., Fotiadis, D., Muller, D., and Engel, A. (2003) Atomic force bio-analytics. Curr. Opin. Chem. Biol. 7, 641-647

    Article  PubMed  CAS  Google Scholar 

  4. Hansma, H., Kasuya, K., and Oroudjev, E. (2004) Atomic force microscopy imaging and pulling of nucleic acids. Curr. Opin. Struc. Biol. 14, 380-385

    Article  CAS  Google Scholar 

  5. Yodh, J.G., Lyubchenko, Y.L., Shlyakhtenko, L.S., Woodbury, N., and Lohr, D. (1999) Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. Biochemistry. 38, 15756-15763

    Article  PubMed  CAS  Google Scholar 

  6. Yodh, J., Woodbury, N., Shlyakhtenko, L., Lyubchenko, Y., and Lohr, D. (2002) Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation. Biochemistry. 41, 3565-3574

    Article  PubMed  CAS  Google Scholar 

  7. Bash, R., Yodh, J., Lyubchenko, Y., Woodbury, N., and Lohr, D. (2001) Population analysis of subsaturated 172-12 nucleosomal arrays by Atomic Force Microscopy detects nonrandom behavior that is favored by histone acetylation and short repeat length. J. Biol. Chem., 276, 48362-48370

    Article  PubMed  CAS  Google Scholar 

  8. Bash, R., Wang, H., Yodh, J., Hager, G., Lindsay, S.M., and Lohr, D. (2003) Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5 S concatameric arrays. Biochemistry. 42, 4681-4690

    Article  PubMed  CAS  Google Scholar 

  9. Wang, H., Bash, R., Yodh, J.G., Hager, G., Lohr, D., and Lindsay, S.M. (2004) Using AFM to track nucleosome remodeling on individual nucleosomal arrays in situ. Biophys. J. 87, 1964-1971

    Article  PubMed  CAS  Google Scholar 

  10. Wang, H., Bash, R., Lindsay, S.M., and Lohr, D. (2005) AFM studies of human Swi-Snf and its interactions with MMTV DNA and chromatin. Biophys. J. 89, 3386-3398

    Article  PubMed  CAS  Google Scholar 

  11. Schnitzler, G., Cheung, C., Hafner, J., Saurin, A., Kingston, R., and Lieber, C. (2001) Direct imaging of human Swi-Snf remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips. Mol. Cell. Biol. 21, 8504-8511

    Article  PubMed  CAS  Google Scholar 

  12. Kepert, J., Mazurkiewicz, J., Heuvelman, G., Tóth, K., and Rippe, K. (2005) NAP1 modulates binding of linker histone H1 to chromatin and induces an extended chromatin fiber conformation. J. Biol. Chem. 280, 34063-34072

    Article  PubMed  CAS  Google Scholar 

  13. Solis, F. J., Bash, R., Yodh, J., Lindsay, S., and Lohr, D. (2004) A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNAhistone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays. Biophys. J. 87, 1-16

    Article  Google Scholar 

  14. Wang, H., Bash, R., Yodh, J., Hager, G., Lohr, D., and Lindsay, S. (2002) Glutaraldehyde-modified mica: a new surface for atomic force microscopy of chromatin Biophys. J. 83, 3619-3625

    CAS  Google Scholar 

  15. Bash, R., Wang, H., Anderson, C., Yodh, J., Hager, G., Lindsay, S. M., and Lohr, D. (2006) AFM imaging of protein movements: histones H2A-H2B release during nucleosome remodeling. FEBS Lett. 580, 4757-4761

    Article  PubMed  CAS  Google Scholar 

  16. Stroh, C., Wang, H., Bash, R., Ashcroft, B., Nelson, J., Gruber, H., Lohr, D., Lindsay, S.M., and Hinterdorfer, P. (2004) Single molecule recognition imaging microscopy. Proc. Natl. Acad. Sci. USA. 101, 12503-12507

    Article  PubMed  CAS  Google Scholar 

  17. Lohr, D., Bash, R., Wang, H., and Lindsay, S.M. (2007) Using atomic force microscopy to study chromatin and nucleosome remodeling. Methods. 41, 333-341

    Article  PubMed  CAS  Google Scholar 

  18. Leuba, S., Bennink, M., and Zlatanova, J. (2004) Single molecule analysis of chromatin. Methods Enzymol. 376, 73-105

    Article  PubMed  CAS  Google Scholar 

  19. Kienberger, F., Ebner, A., Gruber, H., and Hinterdorfer, P. (2006) Molecular recognition imaging and force spectroscopy of single biomolecules. Acc. Chem. Res. 39, 29-36

    Article  PubMed  CAS  Google Scholar 

  20. Leuba, S., Yang, G., Robert, C., Samori, B., van Holde, K., Zlatanova, J., and Bustamante, C. (1994). 3-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc. Natl. Acad. Sci. USA. 91, 11621-11625

    Article  PubMed  CAS  Google Scholar 

  21. Jackson, D., Dickinson, P., and Cook, P.R. (1990) Attachment of DNA to the nucleoskeleton of HeLa cells examined using physiological conditions. Nucleic Acids Res. 18, 4385-4393

    Article  PubMed  CAS  Google Scholar 

  22. Haselgrubler, T., Amerstorfer, A., Schindler, H., and Gruber, H. (1995) Synthesis and applications of a new poly(ethyleneglycol) derivative for the crosslinking of amines with thiols. Biocojugate Chem. 6, 242-248

    Article  CAS  Google Scholar 

  23. Luger, K., Rechstiner, T., and Richmond, T.J. (1999) Preparation of nucleosome core particles from recombinant histones. Meth. Enzymol. 304, 3-18

    Article  PubMed  CAS  Google Scholar 

  24. Carruthers, L., Tse, C., Walker, K., and Hansen, J. (1999) Assembly of defined nucleosomal and chromatin arrays using pure components. Meth. Enzmol. 304, 19-34

    Article  CAS  Google Scholar 

  25. Marcus, W.D., Wang, H., Lohr, D., Sierks, M.R., and Lindsay, S. M. (2006) Isolation of an scFv targeting BRG1 using phage display. Biochem. Biophys. Res. Commun. 342, 1123-1129

    Article  PubMed  CAS  Google Scholar 

  26. Lin, L., Wang, H., Liu, Y., Yan, H., and Lindsay, S.M. (2006) Recognition imaging with a DNA aptamer. Biophys. J. 90, 4236-4238

    Article  PubMed  CAS  Google Scholar 

  27. Kingston, R. E., and Narlikar, G. J. (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339-2352

    Article  PubMed  CAS  Google Scholar 

  28. Olave, I. A., Reck-Peterson, S. L., and Crabtree, G. R. (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755-781

    Article  PubMed  CAS  Google Scholar 

  29. Luger, K., A. Mader, R. Richmond, D. Sargent, and T. Richmond. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support from the National Institutes of Health is gratefully acknowledged. Also, Ralph Bash died in October 2007; this chapter is dedicated to our longtime colleague and coworker whose skills in AFM analysis of chromatin contributed immeasurably to the development of these approaches.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Lohr, D., Wang, H., Bash, R., Lindsay, S.M. (2008). Recognition Imaging of Chromatin and Chromatin-Remodeling Complexes in the Atomic Force Microscope. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 464. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-461-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-461-6_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-460-9

  • Online ISBN: 978-1-60327-461-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics