Skip to main content

Application of Anomalous Diffraction Methods to the Study of DNA and DNA-Complexes

  • Protocol
  • First Online:
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 613))

Abstract

Anomalous scattering is commonly used to solve X-ray structures. As discussed here, anomalous scattering is also useful for characterizing complex systems with mixed and partial occupancies, where true electron density is represented by unresolvable ensemble averages. The solvent environment surrounding nucleic acids is an example of such a system, as are some DNA-ligand systems. The atomic number and wavelength dependencies of anomalous scattering allow one to filter out the electron densities of C, N, and O, and to cleanly visualize the electron densities of heavier atoms. Therefore, anomalous scattering can make beacons of selected atoms. In addition, anomalous scattering provides a model-independent method for determining atomic identities. Here, we describe applications of anomalous scattering to the structure determination of DNA-platinum complexes and in cation associations of free DNA, of DNA-anthracycline complexes, of chemically modified DNA, and of DNA-protein complexes. The utility of Rb+ and Tl+ as K+ substitutes is supported by similarities in Rb+ and Tl+ association with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ealick SE (2000) Advances in multiple wavelength anomalous diffraction crystallography. Curr Opin Struct Biol 4:495-499

    CAS  Google Scholar 

  2. Hendrickson WA (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254:51-58

    Article  CAS  PubMed  Google Scholar 

  3. Sines CC, McFail-Isom L, Howerton SB, VanDerveer D, Williams LD (2000) Cations mediate B-DNA conformational heterogeneity. J Am Chem Soc 122:11048-11056

    Article  CAS  Google Scholar 

  4. McFail-Isom L, Sines CC, Williams LD (1999) DNA structure: cations in charge? Curr Opin Struct Biol 9:298-304

    Article  CAS  PubMed  Google Scholar 

  5. Shui X, Sines C, McFail-Isom L, VanDerveer D, Williams LD (1998) Structure of the potassium form of CGCGAATTCGCG: DNA deformation by electrostatic collapse around inorganic cations. Biochemistry 37:16877-16887

    Article  CAS  PubMed  Google Scholar 

  6. Shui X, McFail-Isom L, Hu GG, Williams LD (1998) The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry 37:8341-8355

    Article  CAS  PubMed  Google Scholar 

  7. Chiu TK, Kaczor-Grzeskowiak M, Dickerson RE (1999) Absence of minor groove monovalent cations in the crosslinked dodecamer CGCGAATTCGCG. J Mol Biol 292:589-608

    Article  CAS  PubMed  Google Scholar 

  8. Chiu TK, Dickerson RE (2000) 1 Å Crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol 301:915-945

    Article  CAS  PubMed  Google Scholar 

  9. Moulaei T, Maehigashi T, Lountos GT, Komeda S, Watkins D, Stone MP, Marky LA, Li JS, Gold B, Williams LD (2005) Structure of B-DNA with cations tethered in the major groove. Biochemistry 44:7458-7468

    Article  CAS  PubMed  Google Scholar 

  10. Howerton SB, Nagpal A, Williams LD (2003) Surprising roles of electrostatic interactions in DNA-ligand complexes. Biopolymers 69:87-99

    Article  CAS  PubMed  Google Scholar 

  11. Howerton SB, Sines CC, VanDerveer D, Williams LD (2001) Locating monovalent cations in the grooves of B-DNA. Biochemistry 40:10023-10031

    Article  CAS  PubMed  Google Scholar 

  12. Tereshko V, Wilds CJ, Minasov G, Prakash TP, Maier MA, Howard A, Wawrzak Z, Manoharan M, Egli M (2001) Detection of alkali metal ions in DNA crystals using state-of-the-art X-ray diffraction experiments. Nucleic Acids Res 29:1208-1215

    Article  CAS  PubMed  Google Scholar 

  13. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377:649-652

    Article  CAS  PubMed  Google Scholar 

  14. Ohndorf UM, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399:708-712

    Article  CAS  PubMed  Google Scholar 

  15. Spingler B, Whittington DA, Lippard SJ (2001) 2.4 Å Crystal structure of an Oxaliplatin 1, 2-d(GpG) intrastrand cross-link in a DNA dodecamer duplex. Inorg Chem 40:5596-5602

    Article  CAS  PubMed  Google Scholar 

  16. Silverman AP, Bu W, Cohen SM, Lippard SJ (2002) 2.4-Å Crystal structure of the asymmetric platinum complex [Pt(ammine)(cyclohexylamine)]2+ bound to a dodecamer DNA duplex. J Biol Chem 277:49743-49749

    Article  CAS  PubMed  Google Scholar 

  17. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307-320

    Article  CAS  PubMed  Google Scholar 

  18. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467-2498

    Article  CAS  PubMed  Google Scholar 

  19. Barnes KR, Lippard SJ (2004) Cisplatin and related anticancer drugs: recent advances and insights. Met Ions Biol Syst 42:143-177

    CAS  PubMed  Google Scholar 

  20. Veerapandian B, Gilliland GL, Raag R, Svensson AL, Masui Y, Hirai Y, Poulos TL (1992) Functional implications of interleukin-1-beta based on the 3-dimensional structure. Proteins 12:10-23

    Article  CAS  PubMed  Google Scholar 

  21. Xia ZX, Dai WW, Xiong JP, Hao ZP, Davidson VL, White S, Mathews FS (1992) The three-dimensional structures of methanol dehydrogenase from two methylotrophic bacteria at 2.6-A resolution. J Biol Chem 267:22289-22297

    CAS  PubMed  Google Scholar 

  22. Quillin ML, Wingfield PT, Matthews BW (2006) Determination of solvent content in cavities in Il-1beta using experimentally phased electron density. Proc Natl Acad Sci U S A 103:19749-19753

    Article  CAS  PubMed  Google Scholar 

  23. Lipscomb LA, Zhou FX, Presnell SR, Woo RJ, Peek ME, Plaskon RR, Williams LD (1996) Structure of a DNA-porphyrin complex. Biochemistry 35:2818-2823

    Article  CAS  PubMed  Google Scholar 

  24. Williams RJP (1971) Biochemistry of Group Ia and IIa cations. Adv Chem Ser 100:155-173

    Article  Google Scholar 

  25. Manners JP, Morallee KG, Williams RJP (1970) Thallium(I) as a potassium probe in biological systems. J Chem Soc Chem Commun 965-966

    Google Scholar 

  26. Kayne FJ (1971) Thallium (I) activation of pyruvate kinase. Arch Biochem Biophys 143:232

    Article  CAS  PubMed  Google Scholar 

  27. Post RL, Kume S, Tobin T, Orcutt B, Sen AK (1969) Flexibility of an active center in sodium-plus-potassium adenosine triphosphatase. J Gen Physiol 54:306-326

    Article  CAS  PubMed  Google Scholar 

  28. Inturrissi CE (1969) Thallium-induced dephosphorylation of a phosphorylated intermediate of (sodium + thallium-activated) ATPase. Biochim Biophys Acta 178:630

    Google Scholar 

  29. Inturrissi CE (1969) Thallium activation of K+-activated phosphatases from beef brain. Biochim Biophys Acta 173:567

    Article  Google Scholar 

  30. Britten JS, Blank M (1968) Thallium activation of (Na+-K+)-activated ATPase of rabbit kidney. Biochim Biophys Acta 159:160-166

    CAS  PubMed  Google Scholar 

  31. Reuben J, Kayne FJ (1971) Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates - evidence for a substrate-induced conformational change. J Biol Chem 246:6227-6234

    CAS  PubMed  Google Scholar 

  32. Pedersen PA, Nielsen JM, Rasmussen JH, Jorgensen PL (1998) Contribution to Tl+, K+, and Na+ Binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in alpha-subunit of renal Na, K-ATPase. Biochemistry 37:17818-17827

    Article  CAS  PubMed  Google Scholar 

  33. Villeret V, Huang S, Fromm HJ, Lipscomb WN (1995) Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1, 6-bisphosphatase. Proc Natl Acad Sci U S A 92:8916-8920

    Article  CAS  PubMed  Google Scholar 

  34. Loria JP, Nowak T (1998) Conformational changes in yeast pyruvate kinase studied by 205Tl+ NMR. Biochemistry 37:6967-6974

    Article  CAS  PubMed  Google Scholar 

  35. Badger J, Li Y, Caspar DL (1994) Thallium counterion distribution in cubic insulin crystals determined from anomalous X-Ray diffraction data. Proc Natl Acad Sci U S A 91:1224-1228

    Article  CAS  PubMed  Google Scholar 

  36. Badger J, Kapulsky A, Gursky O, Bhyravbhatla B, Caspar DL (1994) Structure and selectivity of a monovalent cation binding site in cubic insulin crystals. Biophys J 66:286-292

    Article  CAS  PubMed  Google Scholar 

  37. Gill HS, Eisenberg D (2001) The crystal structure of phosphinothricin in the active site of glutamine synthetase illuminates the mechanism of enzymatic inhibition. Biochemistry 40:1903-1912

    Article  CAS  PubMed  Google Scholar 

  38. Basu S, Rambo RP, Strauss-Soukup J, Cate JH, Ferre-D’Amare AR, Strobel SA, Doudna JA (1998) A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat Struct Biol 5:986-992

    Article  CAS  PubMed  Google Scholar 

  39. Conn GL, Gittis AG, Lattman EE, Misra VK, Draper DE (2002) A compact RNA tertiary structure contains a buried backbone-K+ complex. J Mol Biol 318:963-973

    Article  CAS  PubMed  Google Scholar 

  40. Correll CC, Swinger K (2003) Common and distinctive features of GNRA tetraloops based on a Guaa tetraloop structure at 1.4 Å resolution. RNA 9:355-363

    Article  CAS  PubMed  Google Scholar 

  41. Basu S, Szewczak AA, Cocco M, Strobel SA (2000) Direct detection of monovalent metal ion binding to a DNA G-quartet by 205Tl NMR. J Am Chem Soc 122:3240-3241

    Article  CAS  Google Scholar 

  42. Gill ML, Strobel SA, Loria JP (2006) Crystallization and characterization of the thallium form of the oxytricha nova G-quadruplex. Nucleic Acids Res 34:4506-4514

    Article  CAS  PubMed  Google Scholar 

  43. Caceres C, Wright G, Gouyette C, Parkinson G, Subirana JA (2004) A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions. Nucleic Acids Res 32:1097-1102

    Article  CAS  PubMed  Google Scholar 

  44. Janiak C (1997) (Organo)Thallium (I) and (II) chemistry: syntheses, structures, properties and applications of subvalent thallium complexes with alkyl, cyclopentadienyl, arene or hydrotris(pyrazolyl)borate ligands. Coord Chem Rev 163:107-216

    Article  CAS  Google Scholar 

  45. Kristiansson O (2002) Structures of complexes of Thallium(I) and functionalized ­benzoate ligands with pronounced stereoactivity of the lone pair of electrons and metal-phenyl pi-bonding. Eur J Inorg Chem 2002: 2355-2361

    Google Scholar 

  46. Wiesbrock F, Schmidbaur H (2003) Complexity of coordinative bonding in Thallium(I) anthranilates and salicylates. J Am Chem Soc 125:3622-3630

    Article  CAS  PubMed  Google Scholar 

  47. Tereshko V, Minasov G, Egli M (1999) A “Hydrat-Ion” spine in a B-DNA minor groove. J Am Chem Soc 121:3590-3595

    Article  CAS  Google Scholar 

  48. Klein DJ, Moore PB, Steitz TA (2004) The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10:1366-1379

    Article  CAS  PubMed  Google Scholar 

  49. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043-1049

    Article  CAS  PubMed  Google Scholar 

  50. Bond PJ, Langridge R, Jennette KW, Lippard SJ (1975) X-ray fiber diffraction evidence for neighbor exclusion binding of a platinum metallointercalation reagent to DNA. Proc Natl Acad Sci U S A 72:4825-4829

    Article  CAS  PubMed  Google Scholar 

  51. Komeda S, Moulaei T, Woods KK, Chikuma M, Farrell NP, Williams LD (2006) A third mode of DNA binding: phosphate clamps by a polynuclear platinum complex. J Am Chem Soc 128:16092-16103

    Article  CAS  PubMed  Google Scholar 

  52. Farrell N, Kloster MGB. High affinity DNA binding compounds as adjutants in antisense technology. US Patent 6,310,047

    Google Scholar 

  53. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM, (eds) Methods in Enzymology, Macromolecular Crystallography, vol 276, Part A. Academic Press, New York, pp 307-326

    Google Scholar 

  54. Powell HR (1999) The Rossmann Fourier autoindexing algorithm in Mosflm. Acta Crystallogr D Biol Crystallogr 55:1690-1695

    Article  CAS  PubMed  Google Scholar 

  55. Collaborative Computational Project, Number 4 (1994) The Ccp4 Suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760-763

    Google Scholar 

  56. McRee DE (1992) Xtalview: a visual protein crystallographic software system for X11/Xview. J Mol Graph 10:44-46

    Article  Google Scholar 

  57. Crick FHC, Magdoff BS (1956) The theory of isomorphous replacement for protein crystals. Acta Crystallogr A 9:901-908

    Article  CAS  Google Scholar 

  58. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905-921

    Article  CAS  PubMed  Google Scholar 

  59. Chaires JB, Fox KR, Herrara JE, Britt M, Waring MJ (1987) Site and sequence specificity of the daunomycin-DNA interaction. Biochemistry 26:8227-8236

    Article  CAS  PubMed  Google Scholar 

  60. Capranico G, Kohn KW, Pommier Y (1990) Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res 18:6611-6619

    Article  CAS  PubMed  Google Scholar 

  61. Wang AH, Ughetto G, Quigley GJ, Rich A (1987) Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTp-ApCpG) at 1.2 Å resolution. Biochemistry 26:1152-1163

    Article  CAS  PubMed  Google Scholar 

  62. Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, Wang AH-J (1990) Structural comparison of anti-cancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538-2549

    Article  CAS  PubMed  Google Scholar 

  63. Williams LD, Egli M, Ughetto G, van der Marel GA, van Boom JH, Quigley GJ, Wang AH-J, Rich A, Frederick CA (1990) Structure of 11-Deoxydaunomycin bound to DNA containing a phosphorothioate. J Mol Biol 215:313-320

    Article  CAS  PubMed  Google Scholar 

  64. Lipscomb LA, Peek ME, Zhou FX, Bertrand JA, VanDerveer D, Williams LD (1994) Water ring structure at DNA interfaces: hydration and dynamics of DNA-Anthracycline complexes. Biochemistry 33:3649-3659

    Article  CAS  PubMed  Google Scholar 

  65. Chaires JB, Satyanarayana S, Suh D, Fokt I, Przewloka T, Priebe W (1996) Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry 35:2047-2053

    Article  CAS  PubMed  Google Scholar 

  66. Qu X, Chaires JB (2001) Hydration changes for DNA intercalation reactions. J Am Chem Soc 123:1-7

    Article  CAS  PubMed  Google Scholar 

  67. Quigley GJ, Wang AH-J, Ughetto G, van der Marel GA, van Boom JH, Rich A (1980) Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci U S A 77:7204-7208

    Article  CAS  PubMed  Google Scholar 

  68. Williams LD, Frederick CA, Ughetto G, Rich A (1990) Ternary interactions of spermine with DNA:4′-epiadriamycin and other DNA:anthracycline complexes. Nucleic Acids Res 18:5533-5541

    Article  CAS  PubMed  Google Scholar 

  69. Hu GG, Shui X, Leng F, Priebe W, Chaires JB, Williams LD (1997) Structure of a DNA-bisdaunomycin complex. Biochemistry 36:5940-5946

    Article  CAS  PubMed  Google Scholar 

  70. Langlois d’Estaintot B, Gallois B, Brown T, Hunter WN (1992) The Molecular structure of a 4′-epiadriamycin complex with d(TGATCA) at 1.7 Å resolution: comparison with the structure of 4′-epiadriamycin d(TGTACA) and d(CGATCG) complexes. Nucleic Acids Res 20:3561-3566

    Article  PubMed  Google Scholar 

  71. Moore MH, Hunter WN, Langlois d’Estaintot B, Kennard O (1989) DNA-drug interactions: the crystal structure of d(CGATCG) complexed with daunomycin. J Mol Biol 206:693-705

    Article  CAS  PubMed  Google Scholar 

  72. Schumann W, Lindenblatt E, Bade EG (1976) Bacteriophage-specific DNA-binding proteins in P22-lysogenic and in P22-infected Salmonella typhimurium. J Virol 20:334-338

    CAS  PubMed  Google Scholar 

  73. Poteete AR, Ptashne M (1982) Control of transcription by the bacteriophage P22 repressor. J Mol Biol 157:21-48

    Article  CAS  PubMed  Google Scholar 

  74. Maniatis T, Ptashne M, Backman K, Kield D, Flashman S, Jeffrey A, Maurer R (1975) Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell 5:109-113

    Article  CAS  PubMed  Google Scholar 

  75. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240-255

    Article  CAS  PubMed  Google Scholar 

  76. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, Murshudov GN (2004) Refmac5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60:2184-2195

    Article  PubMed  Google Scholar 

  77. Agarwal RC, Isaacs NW (1978) Fast least-squares method of structure refinement using the Fast-Fourier Algorithm - refinement of insulin at 1.5a resolution. Acta Crystallogr A Found Crystallogr 34:S46

    Google Scholar 

  78. Dauter Z, Adamiak DA (2001) Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. Acta Crystallogr D Biol Crystallogr 57:990-995

    Article  CAS  PubMed  Google Scholar 

  79. Guex N, Peitsch MC (1997) Swiss-Model and the Swiss-Pdbviewer: an environment for comparative protein modeling. Electrophoresis 18:2714-2723

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren Dean Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Watkins, D., Moulaei, T., Komeda, S., Williams, L.D. (2010). Application of Anomalous Diffraction Methods to the Study of DNA and DNA-Complexes. In: Fox, K. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology, vol 613. Humana Press. https://doi.org/10.1007/978-1-60327-418-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-418-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-417-3

  • Online ISBN: 978-1-60327-418-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics