Skip to main content

Drug Binding to DNA⋅RNA Hybrid Structures

  • Protocol
  • First Online:
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 613))

Abstract

DNA·RNA hybrid duplexes are functionally important structures in gene expression that are underutilized as potential drug targets. Several tools are described here for the discovery and characterization of small molecules capable of the selective recognition of DNA·RNA hybrid structures. Competition dialysis and thermal denaturation of mixtures of polynucleotide structures can be used to identify small molecules that bind selectively to DNA·RNA hybrids. An assay that measures small molecule inhibition of RNase H can be used to measure a functional response to these ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich A (1960) A hybrid helix containing both deoxyribose and ribose polynucleotides and its relation to the transfer of information between the nucleic acids. Proc Nat Acad Sci USA 46:1044-53

    Article  CAS  PubMed  Google Scholar 

  2. Rich A (2006) Discovery of the hybrid helix and the first DNA-RNA hybridization. J Biol Chem 281:7693-6

    Article  CAS  PubMed  Google Scholar 

  3. Williams DA, Lemke TL (2002) Foye’s principles of medicinal chemistry. Lippincott, Williams & Wilkins, Baltimore, MD, USA

    Google Scholar 

  4. Ren J, Qu X, Dattagupta N, Chaires JB (2001) Molecular recognition of a RNA:DNA hybrid structure. J Am Chem Soc. 123:6742-3

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri CM, Li TK, Guo S et al (2003) Aminoglycoside complexation with a DNA·RNA hybrid duplex: the thermodynamics of recognition and inhibition of RNA processing enzymes. J Am Chem Soc 125:6469-77

    Article  CAS  PubMed  Google Scholar 

  6. Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telome­rase catalytic subunit TERT. Nature 455:633-7

    Article  CAS  PubMed  Google Scholar 

  7. Francis R, West C, Friedman SH (2001) Targeting telomerase via its key RNA/DNA heteroduplex. Bioorg Chem 29:107-17

    Article  CAS  PubMed  Google Scholar 

  8. Rangarajan S, Friedman SH (2007) Design, synthesis, and evaluation of phenanthridine derivatives targeting the telomerase RNA/DNA heteroduplex. Bioorg Med Chem Lett 17:2267-73

    Article  CAS  PubMed  Google Scholar 

  9. Yu HQ, Zhang DH, Gu XB, Miyoshi D, Sugimoto N (2008) Regulation of telomerase activity by the thermodynamic stability of a DNA x RNA hybrid. Angew Chem Int Ed Engl 47:9034-8

    Article  CAS  PubMed  Google Scholar 

  10. Gmeiner WH, Cui W, Konerding DE et al (1999) Shape-Selective Recognition of a Model Okazaki Fragment by Geometrically-Constrained Bis-Distamycins. J Biomol Struct Dyn 17:507-18

    CAS  PubMed  Google Scholar 

  11. Saenger W (1984) Principles of Nucleic Acid Structure. Springer Verlag, New York

    Google Scholar 

  12. Noy A, Perez A, Marquez M, Luque FJ, Orozco M (2005) Structure, recognition properties, and flexibility of the DNA.RNA hybrid. J Am Chem Soc 127:4910-20

    Article  CAS  PubMed  Google Scholar 

  13. Gyi JI, Conn GL, Lane AN, Brown T (1996) Comparison of the thermodynamic stabilities and solution conformations of DNA.RNA hybrids containing purine-rich and pyrimidine-rich strands with DNA and RNA duplexes. Biochemistry 35:12538-48

    Article  CAS  PubMed  Google Scholar 

  14. Gyi JI, Lane AN, Conn GL, Brown T (1998) Solution structures of DNA.RNA hybrids with purine-rich and pyrimidine- rich strands: comparison with the homologous DNA and RNA duplexes. Biochemistry 37:73-80

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins TC (2000) Targeting multi-stranded DNA structures. Curr Med Chem 7:99-115

    CAS  PubMed  Google Scholar 

  16. Alberti P, Ren J, Teulade-Fichou MP et al (2001) Interaction of an acridine dimer with DNA quadruplex structures. J Biomol Struct Dyn 19:505-13

    CAS  PubMed  Google Scholar 

  17. Shinomiya M, Chu WH, Carlson RG, Weaver RF, Takusagawa F (1995) Structural, Physical, and Biological Characteristics of RNA·DNA Binding-Agent N8-Actinomycin-D. Bio­chemistry 34:8481-91

    Article  CAS  PubMed  Google Scholar 

  18. Takusagawa F, Takusagawa KT, Carlson RG, Weaver RF (1997) Selectivity of F8-actinomycin D for RNA·DNA Hybrids and its Anti-leukemia Activity. Bioorg Med Chem 5:1197-207

    Article  CAS  PubMed  Google Scholar 

  19. Shaw NN, Arya DP (2008) Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90:1026-39

    Article  CAS  PubMed  Google Scholar 

  20. Shaw NN, Xi H, Arya DP (2008) Molecular Recognition of a DNA:RNA Hybrid: Sub-nanomolar Binding by a Neomycin-methidium Conjugate. Bioorg Med Chem Lett 18:4142-5

    Article  CAS  PubMed  Google Scholar 

  21. Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38:16067-75

    Article  CAS  PubMed  Google Scholar 

  22. Chaires JB (2002) A competition dialysis assay for the study of structure-selective ligand binding to nucleic acids. In: Beaucage SL, Bergstrom DE, Glick GD, Jones RA (eds) Current protocols in nucleic acid chemistry, vol 1. John Wiley & Sons, Inc, New York, pp 8.3.1-8.3.8

    Google Scholar 

  23. Ragazzon P, Chaires JB (2007) Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods 43:313-23

    Article  CAS  PubMed  Google Scholar 

  24. Ragazzon PA, Garbett NC, Chaires JB (2007) Competition dialysis: a method for the study of structural selective nucleic acid binding. Methods 42:173-82

    Article  CAS  PubMed  Google Scholar 

  25. Ren J, Chaires JB (2001) Rapid screening of structurally selective ligand binding to nucleic acids. Methods Enzymol 340:99-108

    Article  CAS  PubMed  Google Scholar 

  26. Shi X, Chaires JB (2006) Sequence- and structural-selective nucleic acid binding revealed by the melting of mixtures. Nucleic Acids Res 34:e14

    Article  PubMed  Google Scholar 

  27. Wilson WD, Tanious F, Fernades-Saiz M, Rigl CT (1997) Evaluation of drug-nucleic acid interactions by thermal melting curves. In: Fox KR (ed) Drug-DNA interaction protocols, vol 90. Humana, Totowa, NJ, pp 219-40

    Chapter  Google Scholar 

  28. Shi X, Chaires JB (2006) Thermal denaturation of drug-DNA complexes: tools and tricks. In: Waring M (ed) Sequence-specific DNA Binding Agents. RSC Publishing, Cambridge, pp 130-51

    Google Scholar 

  29. Sun D, Hurley LH, Von Hoff DD (1998) Telomerase assay using biotinylated-primer extension and magnetic separation of the products. Biotechniques 25:1046-51

    CAS  PubMed  Google Scholar 

  30. Kim NW, Wu F (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 25:2595-7

    Article  CAS  PubMed  Google Scholar 

  31. Francis R, Friedman SH (2003) An interference-free fluorescent assay of telomerase for the high-throughput analysis of inhibitors. Anal Biochem 323:65-73

    Article  CAS  PubMed  Google Scholar 

  32. Craig LC, King TP (1962) Dialysis. Methods Biochem Anal 10:175-99

    Article  CAS  PubMed  Google Scholar 

  33. Muller W, Crothers DM (1975) Interactions of heteroaromatic compounds with nucleic acids. 1. The influence of heteroatoms and polarizability on the base specificity of intercalating ligands. Eur J Biochem 54:267-77

    Article  CAS  PubMed  Google Scholar 

  34. Chaires JB (2005) Competition dialysis: an assay to measure the structural selectivity of drug-nucleic acid interactions. Curr Med Chem Anti-Canc Agents 5:339-52

    Article  CAS  Google Scholar 

  35. Chaires JB (2005) Structural selectivity of drug-nucleic acid interactions probed by competition dialysis. In: Waring MJ, Chaires JB (eds) DNA binders and related subjects, vol 253. Springer-Verlag, Berlin, pp 33-54

    Google Scholar 

  36. Crothers DM (1968) Calculation of melting curves for DNA. Biopolymers 6:1391-404

    Article  CAS  PubMed  Google Scholar 

  37. McGhee JD (1976) Theoretical calculations of the helix-coil transition of DNA in the presence of large, cooperatively binding ligands. Biopolymers 15:1345-75

    Article  CAS  PubMed  Google Scholar 

  38. Raschke TM, Kho J, Marqusee S (1999) Confirmation of the hierarchical folding of RNase H: a protein engineering study. Nature Struct Biol 6:825-30

    Article  CAS  PubMed  Google Scholar 

  39. Tipton KF (1992) Principles of enzyme assay and kinetic studies. In: Danson MJ J (ed) Enzyme assays a practical approach. Oxford University Press, Oxford, UK

    Google Scholar 

  40. Chaires JB, Dattagupta N, Crothers DM (1982) Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on interaction of daunomycin with deoxyribonucleic acid. Biochemistry 21:3933-40

    Article  CAS  PubMed  Google Scholar 

  41. Moller A, Nordheim A, Kozlowski SA, Patel DJ, Rich A (1984) Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions. Biochemistry 23:54-62

    Article  CAS  PubMed  Google Scholar 

  42. KaleidaGraph: Synergy Software, 2004.

    Google Scholar 

  43. Cai L, Chen L, Raghavan S, Ratliff R, Moyzis R, Rich A (1998) Intercalated cytosine motif and novel adenine clusters in the crystal structure of the Tetrahymena telomere. Nucleic Acids Res 26:4696-705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work supported by award number R01GM077422 from the National Institute of General Medical Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Chaires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wheelhouse, R.T., Chaires, J.B. (2010). Drug Binding to DNA⋅RNA Hybrid Structures. In: Fox, K. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology, vol 613. Humana Press. https://doi.org/10.1007/978-1-60327-418-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-418-0_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-417-3

  • Online ISBN: 978-1-60327-418-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics