Skip to main content

Topoisomerase I-Mediated DNA Relaxation as a Tool to Study Intercalation of Small Molecules into Supercoiled DNA

  • Protocol
  • First Online:
Drug-DNA Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 613))

Abstract

Several biochemical and biophysical methods are available to study the intercalation of a small molecule between two consecutive base pairs of DNA. Among them, the topoisomerase I-mediated DNA relaxation assay has proved highly efficient, relatively easy to handle and very informative to investigate drug binding to DNA. The test relies on the use of a supercoiled plasmid to mimic the topological constraints of genomic DNA. The three main components of the assay - the topoisomerase I enzyme, DNA helix and intercalating small molecules - are presented here in a structural context. The principle of the assay is described in detail, along with a typical experimental protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang JC (1996) DNA topoisomerase. Annu Rev Biochem 65:635-692

    Article  CAS  PubMed  Google Scholar 

  2. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3:430-440

    Article  CAS  PubMed  Google Scholar 

  3. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369-413

    Article  CAS  PubMed  Google Scholar 

  4. Corbett KD, Berger JM (2004) Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 33:95-118

    Article  CAS  PubMed  Google Scholar 

  5. Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114:75-85

    Article  CAS  PubMed  Google Scholar 

  6. Giles GI, Sharma RP (2005) Topoisomerase enzymes as therapeutic targets for cancer chemotherapy. Med Chem 1:383-394

    Article  CAS  PubMed  Google Scholar 

  7. Forterre P, Gribaldo S, Gadelle D, Serre MC (2007) Origin and evolution of DNA topoisomerases. Biochimie 89:427-446

    Article  CAS  PubMed  Google Scholar 

  8. McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623:83-97

    CAS  PubMed  Google Scholar 

  9. Champoux JJ (2002) A first view of the structure of a type IA topoisomerase with bound DNA. Trends Pharmacol Sci 23:199-201

    Article  CAS  PubMed  Google Scholar 

  10. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr, Stewart L (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99:15387-15392

    Article  CAS  PubMed  Google Scholar 

  11. Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 48:2336-2345

    Article  CAS  PubMed  Google Scholar 

  12. Xiong B, Burk DL, Shen J, Luo X, Liu H, Shen J, Berghuis AM (2008) The type IA topoisomerase catalytic cycle: A normal mode analysis and molecular dynamics simulation. Proteins 71:1984-1994

    Article  CAS  PubMed  Google Scholar 

  13. Carey JF, Schultz SJ, Sisson L, Fazzio TG, Champoux JJ (2003) DNA relaxation by human topoisomerase I occurs in the closed clamp conformation of the protein. Proc Natl Acad Sci U S A 100:5640-5645

    Article  CAS  PubMed  Google Scholar 

  14. Koster DA, Croquette V, Dekker C, Shuman S, Dekker NH (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434:671-674

    Article  CAS  PubMed  Google Scholar 

  15. Calladine CR, Drew HR (1997) The molecule and how it works. In: Understanding DNA, 2nd edn, p 56

    Google Scholar 

  16. Calladine CR, Drew HR, Luisi BF, Travers AA (2004) Different kinds of Double Helix. In: Understanding DNA, 3rd edn, pp 39-63

    Google Scholar 

  17. Olson WK, Babcock MS, Gorin A, Liu G, Marky NL, Martino JA, Pedersen SC, Srinivasan AR, Tobias I, Westcott TP, Zhang P (1995) Flexing and folding double helical DNA. Biophys Chem 55:7-29

    Article  CAS  PubMed  Google Scholar 

  18. Olson WK, Marky NL, Jernigan RL, Zhurkin VB (1993) Influence of fluctuations on DNA curvature. A comparison of flexible and static wedge models of intrinsically bent DNA. J Mol Biol 232:530-554

    Article  CAS  PubMed  Google Scholar 

  19. Dickerson RE, Drew HR (1981) Structure of a B-DNA dodecamer: II. Influence of base sequence on helix structure. J Mol Biol 149:761-786

    Article  CAS  PubMed  Google Scholar 

  20. Dickerson RE, Klug A (1983) Base sequence and helix structure variation in B and A DNA. J Mol Biol 166:419-441

    Article  CAS  PubMed  Google Scholar 

  21. Calladine CR, Drew HR, McCall MJ (1988) The intrinsic curvature of DNA in solution. J Mol Biol 201:127-137

    Article  CAS  PubMed  Google Scholar 

  22. Hunter CA, Lu X-J (1997) DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures. J Mol Biol 265:603-619

    Article  CAS  PubMed  Google Scholar 

  23. Pedone F, Mazzei F, Matzeu M, Barone F (2001) Torsional constant of 27-mer DNA oligomers of different sequences. Biophys Chem 94:175-184

    Article  CAS  PubMed  Google Scholar 

  24. Anselmi C, De Santis P, Paparcone R, Savino M, Scipioni A (2002) From the sequence to the superstructural properties of DNAs. Biophys Chem 95:23-47

    Article  CAS  PubMed  Google Scholar 

  25. Klug A, Jack A, Viswamitra MA, Kennard O, Shakked Z, Steitz TA (1979) A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac repressor protein. J Mol Biol 131:669-680

    Article  CAS  PubMed  Google Scholar 

  26. Drew HR, Dickerson RE (1981) Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol 151:535-556

    Article  CAS  PubMed  Google Scholar 

  27. Nelson HC, Finch JT, Luisi BF, Klug A (1978) The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 330:221-226

    Article  Google Scholar 

  28. El Hassan MA, Calladine CR (1996) Propeller-Twisting of Base-pairs and the Conformational Mobility of Dinucleotide Steps in DNA. J Mol Biol 259:95-103

    Article  CAS  PubMed  Google Scholar 

  29. El Hassan MA, Calladine CR (1996) Structural mechanics of bent DNA. Endeavour 20:61-67

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki M, Amano N, Kakinuma J, Tateno M (1997) Use of a 3D structure data base for understanding sequence-dependent conformational aspects of DNA. J Mol Biol 274:421-435

    Article  CAS  PubMed  Google Scholar 

  31. Zuccheri G, Scipioni A, Cavaliere V, Gargiulo G, De Santis P, Samori B (2001) Mapping the intrinsic curvature and the flexibility along the DNA chain. Proc Natl Acad Sci U S A 98:3074-3079

    Article  CAS  PubMed  Google Scholar 

  32. Bharanidharan D, Gautham N (2006) Principal component analysis of DNA oligonucleotide structural data. Biochem Biophys Res Commun 340:1229-1237

    Article  CAS  PubMed  Google Scholar 

  33. Frederick CA, Williams LD, Ughetto G, Van der Marel GA, Van Boom JH, Rich A, Wang AHJ (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538-2549

    Article  CAS  PubMed  Google Scholar 

  34. Liao LB, Zhou HY, Xiao XM (2005) Spectroscopic and viscosity study of doxorubicin interaction with DNA. J Mol Struct 749:108-113

    Article  CAS  Google Scholar 

  35. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18-30

    Article  CAS  PubMed  Google Scholar 

  36. Adams A (2002) Crystal structures of acridines complexed with nucleic acids. Curr Med Chem 18:1667-1675

    Google Scholar 

  37. Monnot M, Mauffret O, Lescot E, Fermandjian S (1992) Probing intercalation and conformational effects of the anticancer drug 2-methyl-9-hydroxyellipticinium acetate in DNA fragments with circular dichroism. Eur J Biochem 204:1035-1039

    Article  CAS  PubMed  Google Scholar 

  38. Neidle S, Thurston DE (1994) New targets for cancer chemotherapy. In: Kerr DJ, Workman P (eds) CRC Press, Boca Raton, FL, pp 159-75

    Google Scholar 

  39. Lerman LS (1963) The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A 49:94-104

    Article  CAS  PubMed  Google Scholar 

  40. Adams A, Guss JM, Collyer CA, Denny WA, Wakelin LPG (1999) Crystal structure of the topoisomerase II poison 9-amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide bound to the DNA hexanucleotide d(CGTACG)2. Biochemistry 38:9221-9233

    Article  CAS  PubMed  Google Scholar 

  41. Rohs R, Sklenar H, Lavery R, Roder B (2000) Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J Am Chem Soc 122:2860-2866

    Article  CAS  Google Scholar 

  42. Lisgarten JN, Coll M, Portugal J, Wright CW, Aymami J (2002) The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat Struct Biol 9:57-60

    Article  PubMed  Google Scholar 

  43. OhUigin C, McConnell DJ, Kelly JM, van der Putten WJM (1987) Methylene blue photosensitised strand cleavage of DNA: effects of dye binding and oxygen. Nucleic Acids Res 15:7411-7427

    Article  CAS  PubMed  Google Scholar 

  44. Waring MJ, González A, Jiménez A, Vázquez D (1979) Intercalative binding to DNA of antitumour drugs derived from 3-nitro-1, 8-naphthalic acid. Nucleic Acids Res 7:217-230

    Article  CAS  PubMed  Google Scholar 

  45. Waring MJ, Wakelin LP (1974) Echinomycin: a bifunctional intercalating antibiotic. Nature 252:653-657

    Article  CAS  PubMed  Google Scholar 

  46. Wakelin SP, Waring MJ (1976) The binding of echinomycin to deoxyribonucleic acid. Biochem J 157:721-740

    CAS  PubMed  Google Scholar 

  47. Lee JS, Waring MJ (1978) Interaction between synthetic analogues of quinoxaline antibiotics and nucleic acids. Changes in mechanism and specificity related to structural alterations. Biochem J 173:129-144

    CAS  PubMed  Google Scholar 

  48. Viswamitra MA, Kennard O, Cruse WB, Egert E, Sheldrick GM, Jones PG, Waring MJ, Wakelin LP, Olsen RK (1981) Structure of TANDEM and its implication for bifunctional intercalation into DNA. Nature 289:817-819

    Article  CAS  PubMed  Google Scholar 

  49. Bailly C, Braña M, Waring MJ (1996) Sequence-selective intercalation of antitumour bis-naphthalimides into DNA. Evidence for an approach via the major groove. Eur J Biochem 240:195-208

    Article  CAS  PubMed  Google Scholar 

  50. Gallego J, Reid BR (1999) Solution structure and dynamics of a complex between DNA and the antitumor bisnaphthalimide LU-79553: intercalated ring flipping on the millisecond time scale. Biochemistry 38:15104-15115

    Article  CAS  PubMed  Google Scholar 

  51. Armitage BA, Yu C, Devadoss C, Schuster GB (1994) Cationic anthraquinone derivatives as catalytic DNA photonucleases: mechanisms for DNA damage and quinone recycling. J Am Chem Soc 116:9847-9859

    Article  CAS  Google Scholar 

  52. Rybenkov VV, Cozzarelli NR, Vologodskii AV (1993) Probability of DNA knotting and the effective diameter of the DNA double helix. Proc Natl Acad Sci U S A 90:5307-5311

    Article  CAS  PubMed  Google Scholar 

  53. Katritch V, Bednar J, Michoud D, Scharein RG, Dubochet J, Stasiak A (1996) Geometry and physics of knots. Nature 384:142-145

    Article  CAS  Google Scholar 

  54. Podtelezhnikov AA, Cozzarelli NR, Vologodskii AV (1999) Equilibrium distributions of topological states in circular DNA: interplay of supercoiling and knotting. Proc Natl Acad Sci U S A 96:12974-12979

    Article  CAS  PubMed  Google Scholar 

  55. Metzler R, Hanke A (2006) Knots, bubbles, untying, and breathing: probing the topology of DNA and other biomolecules, handbook of theoretical and computational nanotechnology. American Scientific Publishers, Stevenson Ranch, CA

    Google Scholar 

  56. Burnier Y, Dorier J, Stasiak A (2008) DNA supercoiling inhibits DNA knotting. Nucleic Acids Res 36:4956-4963

    Article  CAS  PubMed  Google Scholar 

  57. Drlica K (1992) Control of bacterial DNA supercoiling. Mol Microbiol 6:425-433

    Article  CAS  PubMed  Google Scholar 

  58. Shishido K, Komiyama N, Ikawa S (1987) Increased production of a knotted form of plasmid pBR322 DNA in Escherichia coli DNA topoisomerase mutants. J Mol Biol 195:215-218

    Article  CAS  PubMed  Google Scholar 

  59. Waring MJ (1964) Complex formation with DNA and inhibition of Escherichia coli RNA polymerase by ethidium bromide. Biochim Biophys Acta 87:358-361

    CAS  PubMed  Google Scholar 

  60. LePecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol 27:87-106

    Article  CAS  PubMed  Google Scholar 

  61. Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Article  CAS  PubMed  Google Scholar 

  62. Pradella S, Hans A, Spröer C, Reichenbach H, Gerth K, Beyer S (2002) Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178:484-492

    Article  CAS  PubMed  Google Scholar 

  63. Hertzberg RP, Caranfa MJ, Hecht SM (1989) On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry 28:4629-4638

    Article  CAS  PubMed  Google Scholar 

  64. Boege F, Straub T, Kehr A, Boesenberg C, Christiansen K, Andersen A, Jakob F, Köhrler J (1996) Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J Biol Chem 271:2262-2270

    Article  CAS  PubMed  Google Scholar 

  65. Attardi DG, De Paolis A, Tocchini-Valentini GP (1981) Purification and characterization of Xenopus laevis type I topoisomerase. J Biol Chem 256:3654-3661

    CAS  PubMed  Google Scholar 

  66. Ishii K, Hasegawa T, Fujisawa K, Andoh T (1983) Rapid purification and characterization of DNA topoisomerase I from cultured mouse mammary carcinoma FM3A cells. J Biol Chem 258:12728-12732

    CAS  PubMed  Google Scholar 

  67. Tanizawa A, Pommier Y (1992) Topoisomerase I alteration in a camptothecin-resistant cell line derived from Chinese hamster DC3F cells in culture. Cancer Res 52:1848-1854

    CAS  PubMed  Google Scholar 

  68. Jensen AD, Svejstrup JQ (1996) Purification and characterization of human topoisomerase I mutants. Eur J Biochem 236:389-394

    Article  CAS  PubMed  Google Scholar 

  69. Rossi F, Labourier E, Forné T, Divita G, Derancourt J, Riou JF, Antoine E, Cathala G, Brunel C, Tazi J (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381:80-82

    Article  CAS  PubMed  Google Scholar 

  70. Zhu CX, Tse-Dinh YC (1999) Overexpression and purification of bacterial DNA topoisomerase I. Methods Mol Biol 94:145-151

    CAS  PubMed  Google Scholar 

  71. Stewart L, Champoux JJ (1999) Purification of baculovirus-expressed human DNA topoisomerase I. Methods Mol Biol 94:223-234

    CAS  PubMed  Google Scholar 

  72. Bronstein IB, Wynne-Jones A, Sukhanova A, Fleury F, Ianoul A, Holden JA, Alix AJ, Dodson GG, Jardillier JC, Nabiev I, Wilkinson AJ (1999) Expression, purification and DNA-cleavage activity of recombinant 68-kDa human topoisomerase I-target for antitumor drugs. Anticancer Res 19:317-327

    CAS  PubMed  Google Scholar 

  73. Takahashi T, Matsuhara S, Abe M, Komeda Y (2002) Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis. Plant Cell 14:2085-2093

    Article  CAS  PubMed  Google Scholar 

  74. Jaxel C, Kohn KW, Wani MC, Wall ME, Pommier Y (1989) Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. Cancer Res 49:1465-1469

    CAS  PubMed  Google Scholar 

  75. Kiltie AE, Ryan AJ (1997) SYBR Green I staining of pulsed field agarose gels is a sensitive and inexpensive way of quantitating DNA double-strand breaks in mammalian cells. Nucleic Acids Res 25:2945-2946

    Article  CAS  PubMed  Google Scholar 

  76. Miller SE, Taillon-Miller P, Kwok PY (1999) Cost-effective staining of DNA with SYBR green in preparative agarose gel electrophoresis. Biotechniques 27:34-36

    CAS  PubMed  Google Scholar 

  77. Huang Q, Fu WL (2005) Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis. Clin Chem Lab Med 43:841-842

    Article  CAS  PubMed  Google Scholar 

  78. Maxwell A, Burton NP, O’Hagan N (2006) High-throughput assays for DNA gyrase and other topoisomerases. Nucleic Acids Res 34:e104

    Article  PubMed  Google Scholar 

  79. Li D, Li G, Guo W, Li P, Wang E, Wang J (2008) Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots. Biomaterials 29:2776-2782

    Article  CAS  PubMed  Google Scholar 

  80. Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX (2008) The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine, DNA complexes. Biomaterials 29:4356-4365

    Article  CAS  PubMed  Google Scholar 

  81. Wahl P, Paoletti J, Le Pecq JB (1970) Decay of fluorescence emission anisotropy of the ethidium bromide-DNA complex. Evidence for an internal motion in DNA. Proc Natl Acad Sci U S A 65:417-421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.-H.D.-C. thanks the Institut pour la Recherche sur le Cancer (IRCL), Association pour la Recherche contre le Cancer (ARC) and the Ligue Nationale contre le Cancer (Comité du Nord) for grants. P.P. thanks the Institut pour la Recherche sur le Cancer sur le Cancer de Lille (IRCL), the Conseil Régional Nord-Pas-de-Calais and the ARC for a PhD fellowship. The authors are grateful to Sabine Depauw for her technical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bailly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Peixoto, P., Bailly, C., David-Cordonnier, MH. (2010). Topoisomerase I-Mediated DNA Relaxation as a Tool to Study Intercalation of Small Molecules into Supercoiled DNA. In: Fox, K. (eds) Drug-DNA Interaction Protocols. Methods in Molecular Biology, vol 613. Humana Press. https://doi.org/10.1007/978-1-60327-418-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-418-0_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-417-3

  • Online ISBN: 978-1-60327-418-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics