Skip to main content

Fine-Scale Structure of the Genome and Markers Used in Association Mapping

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 713))

Abstract

In this chapter, mutation (specifically single-nucleotide polymorphisms, SNPs) and recombination will be covered in more detail, and the concepts of genotype and haplotype will be reviewed. Linkage disequilibrium (LD) describes the strength of a relationship between alleles at different loci. The definition for LD, its visual representation, and the calculation of statistics that measure LD will be presented. The power of genetic association studies to identify disease susceptibility alleles fundamentally relies on the genetic variants studied. A standard approach is to determine a set of tagging-SNPs (tSNPs) that capture the majority of genomic variation in regions of interest by exploiting local correlation structures. The concept of LD and how it is used to select tSNPs will be addressed, as well as specific procedures and algorithms that are practiced by researchers to determine these variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Department of Energy Office of Science. Human Genome Program. Human Genome Project Information. http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml. U.S. Department of Energy Office of Science: Oak ridge, TN, 2008.

  2. National Institutes of Health. NIH Guide: Genetic Architecture of Complex Phenotypes. http://grants.nih.gov/grants/guide/pa-files/PA-98-078.html. National Institutes of Health, Office of Extramural Research: Bethesda, MD, 1998.

  3. Crawford, D. C., Bhangale, T., Li, N., Hellenthal, G., Rieder, M. J., Nickerson, D. A., and Stephens, M. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet, 36: 700–6, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. McVean, G. A., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., and Donnelly, P. The fine-scale structure of recombination rate variation in the human genome. Science, 304: 581–4, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. U.S. National Library of Medicine. Genetics Home Reference: Your Guide to Understanding Genetic Conditions. http://ghr.nlm.nih.gov/handbook/mutationsanddisorders/genemutation. National Institutes of Health: Bethesda, MD, 2008.

  6. National Center for Human Genome Research, National Institutes of Health. Crossing-Over: Genetic Recombination. New Tools for Tomo­rrow’s Health Research, Access Excellence Resource Center: Bethesda, MD, 1992.

    Google Scholar 

  7. Wellcome Trust. The Human Genome. http://genome.wellcome.ac.uk/. Wellcome Trust: London, UK, 2008.

  8. Devlin, B. and Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics, 29: 311–22, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Lewontin, R. C. On measures of gametic disequilibrium. Genetics, 120: 849–52, 1988.

    PubMed  CAS  Google Scholar 

  10. Pritchard, J. K. and Przeworski, M. Linkage disequilibrium in humans: models and data. Am J Hum Genet, 69: 1–14, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Excoffier, L. and Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol, 12: 921–7, 1995.

    PubMed  CAS  Google Scholar 

  12. Hawley, M. E. and Kidd, K. K. HAPLO: a program using the EM algorithm to estimate the frequencies of multi-site haplotypes. J Hered, 86: 409–11, 1995.

    PubMed  CAS  Google Scholar 

  13. Long, J. C., Williams, R. C., and Urbanek, M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet, 56: 799–810, 1995.

    PubMed  CAS  Google Scholar 

  14. Johnson, G. C., Esposito, L., Barratt, B. J., Smith, A. N., Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A., Dudbridge, F., Twells, R. C., Payne, F., Hughes, W., Nutland, S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J., Gough, S. C., Clayton, D. G., and Todd, J. A. Haplotype tagging for the identification of common disease genes. Nat Genet, 29: 233–7, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Thomas, A. GCHap: fast MLEs for haplotype frequencies by gene counting. Bioinformatics, 19: 2002–3, 2003.

    Article  PubMed  CAS  Google Scholar 

  16. Niu, T. Algorithms for inferring haplotypes. Genet Epidemiol, 27: 334–47, 2004.

    Article  PubMed  Google Scholar 

  17. Li, S. S., Cheng, J. J., and Zhao, L. P. Empirical vs Bayesian approach for estimating haplotypes from genotypes of unrelated individuals. BMC Genet, 8: 2, 2007.

    Article  PubMed  Google Scholar 

  18. Stephens, M., Smith, N. J., and Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet, 68: 978–89, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Zhao, J. H., Curtis, D., and Sham, P. C. Model-free analysis and permutation tests for allelic associations. Hum Hered, 50: 133–9, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J., and Altshuler, D. The structure of haplotype blocks in the human genome. Science, 296: 2225–9, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Daly, M. J., Rioux, J. D., Schaffner, S. F., Hudson, T. J., and Lander, E. S. High-resolution haplotype structure in the human genome. Nat Genet, 29: 229–32, 2001.

    Article  PubMed  CAS  Google Scholar 

  22. Reich, D. E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P. C., Richter, D. J., Lavery, T., Kouyoumjian, R., Farhadian, S. F., Ward, R., and Lander, E. S. Linkage disequilibrium in the human genome. Nature, 411: 199–204, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Phillips, M. S., Lawrence, R., Sachidanandam, R., Morris, A. P., Balding, D. J., Donaldson, M. A., Studebaker, J. F., Ankener, W. M., Alfisi, S. V., Kuo, F. S., Camisa, A. L., Pazorov, V., Scott, K. E., Carey, B. J., Faith, J., Katari, G., Bhatti, H. A., Cyr, J. M., Derohannessian, V., Elosua, C., Forman, A. M., Grecco, N. M., Hock, C. R., Kuebler, J. M., Lathrop, J. A., Mockler, M. A., Nachtman, E. P., Restine, S. L., Varde, S. A., Hozza, M. J., Gelfand, C. A., Broxholme, J., Abecasis, G. R., Boyce-Jacino, M. T., and Cardon, L. R. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet, 33: 382–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Dawson, E., Abecasis, G. R., Bumpstead, S., Chen, Y., Hunt, S., Beare, D. M., Pabial, J., Dibling, T., Tinsley, E., Kirby, S., Carter, D., Papaspyridonos, M., Livingstone, S., Ganske, R., Lohmussaar, E., Zernant, J., Tonisson, N., Remm, M., Magi, R., Puurand, T., Vilo, J., Kurg, A., Rice, K., Deloukas, P., Mott, R., Metspalu, A., Bentley, D. R., Cardon, L. R., and Dunham, I. A first-generation linkage disequilibrium map of human chromosome 22. Nature, 418: 544–8, 2002.

    Article  PubMed  CAS  Google Scholar 

  25. Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R., Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T., Norris, M. C., Sheehan, J. B., Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J., Trulson, M. O., Vyas, K. R., Frazer, K. A., Fodor, S. P., and Cox, D. R. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science, 294: 1719–23, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Barrett, J. C., Fry, B., Maller, J., and Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21: 263–5, 2005.

    Article  PubMed  CAS  Google Scholar 

  27. Abecasis, G. R. and Cookson, W. O. GOLD – graphical overview of linkage disequilibrium. Bioinformatics, 16: 182–3, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Ke, X., Hunt, S., Tapper, W., Lawrence, R., Stavrides, G., Ghori, J., Whittaker, P., Collins, A., Morris, A. P., Bentley, D., Cardon, L. R., and Deloukas, P. The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet, 13: 577–88, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., Pasternak, S., Wheeler, D. A., Willis, T. D., Yu, F., Yang, H., Zeng, C., Gao, Y., Hu, H., Hu, W., Li, C., Lin, W., Liu, S., Pan, H., Tang, X., Wang, J., Wang, W., Yu, J., Zhang, B., Zhang, Q., Zhao, H., Zhao, H., Zhou, J., Gabriel, S. B., Barry, R., Blumenstiel, B., Camargo, A., Defelice, M., Faggart, M., Goyette, M., Gupta, S., Moore, J., Nguyen, H., Onofrio, R. C., Parkin, M., Roy, J., Stahl, E., Winchester, E., Ziaugra, L., Altshuler, D., Shen, Y., Yao, Z., Huang, W., Chu, X., He, Y., Jin, L., Liu, Y., Shen, Y., Sun, W., Wang, H., Wang, Y., Wang, Y., Xiong, X., Xu, L., Waye, M. M., Tsui, S. K., Xue, H., Wong, J. T., Galver, L. M., Fan, J. B., Gunderson, K., Murray, S. S., Oliphant, A. R., Chee, M. S., Montpetit, A., Chagnon, F., Ferretti, V., Leboeuf, M., Olivier, J. F., Phillips, M. S., Roumy, S., Sallee, C., Verner, A., Hudson, T. J., Kwok, P. Y., Cai, D., Koboldt, D. C., Miller, R. D., Pawlikowska, L., Taillon-Miller, P., Xiao, M., Tsui, L. C., Mak, W., Song, Y. Q., Tam, P. K., Nakamura, Y., Kawaguchi, T., Kitamoto, T., Morizono, T., Nagashima, A., Ohnishi, Y., et al. A second generation human haplotype map of over 3.1 million SNPs. Nature, 449: 851–61, 2007.

    Article  PubMed  CAS  Google Scholar 

  30. Livingston, R. J., von Niederhausern, A., Jegga, A. G., Crawford, D. C., Carlson, C. S., Rieder, M. J., Gowrisankar, S., Aronow, B. J., Weiss, R. B., and Nickerson, D. A. Pattern of sequence variation across 213 environmental response genes. Genome Res, 14: 1821–31, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Carlson, C. S., Eberle, M. A., Rieder, M. J., Yi, Q., Kruglyak, L., and Nickerson, D. A. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet, 74: 106–20, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. The International HapMap Consortium. A haplotype map of the human genome. Nature, 437: 1299–320, 2005.

    Article  Google Scholar 

  33. The International HapMap Consortium. The International HapMap Project. Nature, 426: 789–96, 2003.

    Article  Google Scholar 

  34. Iles, M. M. Quantification and correction of bias in tagging SNPs caused by insufficient sample size and marker density by means of haplotype-dropping. Genet Epidemiol, 32: 20–8, 2008.

    Article  PubMed  Google Scholar 

  35. Zeggini, E., Rayner, W., Morris, A. P., Hattersley, A. T., Walker, M., Hitman, G. A., Deloukas, P., Cardon, L. R., and McCarthy, M. I. An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet, 37: 1320–2, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Curtin, K., Iles, M. M., and Camp, N. J. Identifying rarer genetic variants for common complex diseases: diseased versus neutral discovery panels. Ann Hum Genet, 73: 54–60, 2009.

    Article  PubMed  CAS  Google Scholar 

  37. National Institutes of Health, N. H. G. R. I. International Consortium Announces the 1000 Genomes Project. pp. News Release, 2008.

    Google Scholar 

  38. Ke, X., Miretti, M. M., Broxholme, J., Hunt, S., Beck, S., Bentley, D. R., Deloukas, P., and Cardon, L. R. A comparison of tagging methods and their tagging space. Hum Mol Genet, 14: 2757–67, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. de Bakker, P. I., Yelensky, R., Pe’er, I., Gabriel, S. B., Daly, M. J., and Altshuler, D. Efficiency and power in genetic association studies. Nat Genet, 37: 1217–23, 2005.

    Article  PubMed  Google Scholar 

  40. Amos, C. I. Successful design and conduct of genome-wide association studies. Hum Mol Genet, 16 (Spec No. 2): R220–5, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Halldorsson, B. V., Istrail, S., and De La Vega, F. M. Optimal selection of SNP markers for disease association studies. Hum Hered, 58: 190–202, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Ao, S. I., Yip, K., Ng, M., Cheung, D., Fong, P. Y., Melhado, I., and Sham, P. C. CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics, 21: 1735–6, 2005.

    Article  PubMed  CAS  Google Scholar 

  43. Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., Ballinger, D. G., Struewing, J. P., Morrison, J., Field, H., Luben, R., Wareham, N., Ahmed, S., Healey, C. S., Bowman, R., Meyer, K. B., Haiman, C. A., Kolonel, L. K., Henderson, B. E., Le Marchand, L., Brennan, P., Sangrajrang, S., Gaborieau, V., Odefrey, F., Shen, C. Y., Wu, P. E., Wang, H. C., Eccles, D., Evans, D. G., Peto, J., Fletcher, O., Johnson, N., Seal, S., Stratton, M. R., Rahman, N., Chenevix-Trench, G., Bojesen, S. E., Nordestgaard, B. G., Axelsson, C. K., Garcia-Closas, M., Brinton, L., Chanock, S., Lissowska, J., Peplonska, B., Nevanlinna, H., Fagerholm, R., Eerola, H., Kang, D., Yoo, K. Y., Noh, D. Y., Ahn, S. H., Hunter, D. J., Hankinson, S. E., Cox, D. G., Hall, P., Wedren, S., Liu, J., Low, Y. L., Bogdanova, N., Schurmann, P., Dork, T., Tollenaar, R. A., Jacobi, C. E., Devilee, P., Klijn, J. G., Sigurdson, A. J., Doody, M. M., Alexander, B. H., Zhang, J., Cox, A., Brock, I. W., MacPherson, G., Reed, M. W., Couch, F. J., Goode, E. L., Olson, J. E., Meijers-Heijboer, H., van den Ouweland, A., Uitterlinden, A., Rivadeneira, F., Milne, R. L., Ribas, G., Gonzalez-Neira, A., Benitez, J., Hopper, J. L., McCredie, M., Southey, M., Giles, G. G., Schroen, C., Justenhoven, C., Brauch, H., Hamann, U., Ko, Y. D., Spurdle, A. B., Beesley, J., Chen, X., Mannermaa, A., Kosma, V. M., Kataja, V., Hartikainen, J., Day, N. E., et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447: 1087–93, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Eeles, R. A., Kote-Jarai, Z., Giles, G. G., Olama, A. A., Guy, M., Jugurnauth, S. K., Mulholland, S., Leongamornlert, D. A., Edwards, S. M., Morrison, J., Field, H. I., Southey, M. C., Severi, G., Donovan, J. L., Hamdy, F. C., Dearnaley, D. P., Muir, K. R., Smith, C., Bagnato, M., Ardern-Jones, A. T., Hall, A. L., O’Brien, L. T., Gehr-Swain, B. N., Wilkinson, R. A., Cox, A., Lewis, S., Brown, P. M., Jhavar, S. G., Tymrakiewicz, M., Lophatananon, A., Bryant, S. L., Horwich, A., Huddart, R. A., Khoo, V. S., Parker, C. C., Woodhouse, C. J., Thompson, A., Christmas, T., Ogden, C., Fisher, C., Jamieson, C., Cooper, C. S., English, D. R., Hopper, J. L., Neal, D. E., and Easton, D. F. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet, 40: 316–21, 2008.

    Article  PubMed  CAS  Google Scholar 

  45. Gao, X., Gordon, D., Zhang, D., Browne, R., Helms, C., Gillum, J., Weber, S., Devroy, S., Swaney, S., Dobbs, M., Morcuende, J., Sheffield, V., Lovett, M., Bowcock, A., Herring, J., and Wise, C. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet, 80: 957–65, 2007.

    Article  PubMed  CAS  Google Scholar 

  46. Klein, R. J., Zeiss, C., Chew, E. Y., Tsai, J. Y., Sackler, R. S., Haynes, C., Henning, A. K., SanGiovanni, J. P., Mane, S. M., Mayne, S. T., Bracken, M. B., Ferris, F. L., Ott, J., Barnstable, C., and Hoh, J. Complement factor H polymorphism in age-related macular degeneration. Science, 308: 385–9, 2005.

    Article  PubMed  CAS  Google Scholar 

  47. Salonen, J. T., Uimari, P., Aalto, J. M., Pirskanen, M., Kaikkonen, J., Todorova, B., Hypponen, J., Korhonen, V. P., Asikainen, J., Devine, C., Tuomainen, T. P., Luedemann, J., Nauck, M., Kerner, W., Stephens, R. H., New, J. P., Ollier, W. E., Gibson, J. M., Payton, A., Horan, M. A., Pendleton, N., Mahoney, W., Meyre, D., Delplanque, J., Froguel, P., Luzzatto, O., Yakir, B., and Darvasi, A. Type 2 diabetes whole-genome association study in four populations: the DiaGen consortium. Am J Hum Genet, 81: 338–45, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional Web Resources

Additional Web Resources

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Curtin, K., Camp, N.J. (2011). Fine-Scale Structure of the Genome and Markers Used in Association Mapping. In: Teare, M. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 713. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-416-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-416-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-415-9

  • Online ISBN: 978-1-60327-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics