Skip to main content

Mendelian Randomisation: A Tool for Assessing Causality in Observational Epidemiology

  • Protocol
  • First Online:
Genetic Epidemiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 713))

Abstract

Detection and assessment of the effect of a modifiable risk factor on a disease with view to informing public health intervention policies are of fundamental concern in aetiological epidemiology. In order to have solid evidence that such a public health intervention has the desired effect, it is necessary to ascertain that an observed association or correlation between a risk factor and a disease means that the risk factor is causal for the disease. Inferring causality from observational data is difficult, typically due to confounding by social, behavioural, or physiological factors which are difficult to control for and particularly difficult to measure accurately. A possible approach to inferring causality when confounding is believed to be present but unobservable, as it may not even be fully understood, is based on the method of instrumental variables and is known under the name of Mendelian randomisation if the instrument is a genetic variant. While testing for the presence of a causal effect using this method is generally straightforward, point estimates of such an effect are only obtainable under additional parametric assumptions. This chapter introduces the concept and illustrates the method and its assumptions with simple real-life examples. It concludes with a brief discussion on pitfalls and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.A. Lawlor, R.M. Harbord, J.A.C. Sterne, N. Timpson, and G.D. Smith. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Statistics in Medicine, 27:1133–1328, 2008.

    Article  PubMed  Google Scholar 

  2. R. Doll, R. Peto, J. Boreham, and I. Sutherland. Mortality from cancer in relation to smoking: 50 years observations on British doctors. British Journal of Cancer, 92:426–429, 2005.

    Article  PubMed  CAS  Google Scholar 

  3. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet, 338:131–137, 1991.

    Article  Google Scholar 

  4. T.O. Scholl and W.G. Johnson. Folic acid: influence on the outcome of pregnancy. American Journal of Clinical Nutrition, 71 (Suppl.):12955–13035, 2000.

    Google Scholar 

  5. W.C. Willett. Vitamin A and lung cancer. Nutritional Review, 48:201–211, 1990.

    CAS  Google Scholar 

  6. R. Peto, R. Doll, J.D. Buckley, and M.B. Sporn. Can dietary beta-carotene materially reduce human cancer rates? Nature, 290:201–208, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New England Journal of Medicine, 330:1029–1035, 1994.

    Article  Google Scholar 

  8. G.D. Smith, S. Ebrahim, S. Lewis, A.L. Hansell, L.J. Palmer, and P.R. Burton. Genetic epidemiology and public health: hope, hype, and future prospects. Lancet, 366:1484–1498, 2005.

    Article  Google Scholar 

  9. A. Tatsioni, N.G. Bonitis, and J.P.A. Ioannidis. Persistence of contradicted claims in the literature. Journal of the American Medical Association, 298:2517–2526, 2007.

    Article  PubMed  CAS  Google Scholar 

  10. G.D. Smith and S. Ebrahim. Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32:1–22, 2003.

    Article  PubMed  Google Scholar 

  11. M.B. Katan. Commentary: Mendelian randomization, 18 years on. International Journal of Epidemiology, 33:10–11, 2004.

    Article  PubMed  Google Scholar 

  12. N.A. Sheehan, V. Didelez, P.R. Burton, and M.D. Tobin. Mendelian randomisation and causal inference in observational epidemiology. PLoS Medicine, 5:e177, 2008.

    Article  PubMed  Google Scholar 

  13. R.J. Bowden and D.A. Turkington. Instrumental Variables. Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  14. S. Greenland. An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology, 29:722–729, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. M.A. Hernán and J.M. Robins. Instruments for causal inference: an epidemiologist’s dream? Epidemiology, 17:360–372, 2006.

    Article  PubMed  Google Scholar 

  16. V. Didelez and N.A. Sheehan. Mendelian randomisation as an instrumental variable approach to causal inference. Statistical Methods in Medical Research, 16:309–330, 2007.

    Article  PubMed  Google Scholar 

  17. J. Pearl. Causal diagrams for empirical research. Biometrika, 82:669–710, 1995.

    Article  Google Scholar 

  18. S.L. Lauritzen. Causal inference from graphical models. In O.E. Barndorff-Nielsen, D.R. Cox, and C. Kluppelberg, editors, Complex Stochastic Systems, Chapter 2, 63–107. Chapman & Hall, Boca Raton, 2000.

    Google Scholar 

  19. A.P. Dawid. Influence diagrams for causal modelling and inference. International Statistical Review, 70:161–189, 2002.

    Article  Google Scholar 

  20. A.P. Dawid. Causal inference using influence diagrams: the problem of partial compliance. In P.J. Green, N.L. Hjort, and S. Richardson, editors, Highly Structured Stochastic Systems, 45–81. Oxford University Press, Oxford, 2003.

    Google Scholar 

  21. D.B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66:688–701, 1974.

    Article  Google Scholar 

  22. J. Pearl. Causality. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  23. M.A. Hernán. A definition of causal effect for epidemiologic research. Journal of Epi­demiology and Community Health, 58:265–271, 2004.

    Article  PubMed  Google Scholar 

  24. V. Didelez and N.A. Sheehan. Mendelian randomisation: why epidemiology needs a formal language for causality. In F. Russo and J. Williamson, editors, Causality and Probability in the Sciences, volume 5, Texts in Philosophy, 263–292. London College Publications, London, 2007.

    Google Scholar 

  25. J.M. Robins, T.J. VanderWeele, and T.S. Richardson. Comment on: Causal effects in the presence of non compliance: a latent variable interpretation. Metron, 64:288–298, 2006.

    Google Scholar 

  26. S. Geneletti and A.P. Dawid. The effect of treatment on the treated: a decision theoretic perspective. In P. McKay Illari, F. Russo and J. Williamson, editors, Causality in the Sciences,Oxford University Press, 2010.

    Google Scholar 

  27. V. Didelez, S. Meng, and N.A. Sheehan. Assumptions of IV methods for observational epidemiology. Statistical Science, 25: 22-40, 2010.

    Google Scholar 

  28. G.D. Smith, D.A. Lawlor, R. Harbord, N. Timpson, I. Day, and S. Ebrahim. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Medicine, 4:e352, 2007.

    Article  PubMed  Google Scholar 

  29. J.P. Casas, L.E. Bautista, L. Smeeth, P. Sharma, and A.D. Hingorani. Homocysteine and stroke: evidence on a causal link from Mendelian randomisation. Lancet, 365:224–232, 2005.

    PubMed  CAS  Google Scholar 

  30. G.D. Smith, R. Harbord, J. Milton, S. Ebrahim, and J. Sterne. Does elevated plasma fibrinogen increase the risk of coronary heart disease? Arteriosclerosis, Thrombosis and Vascular Biology, 25:2228–2233, 2005.

    Article  CAS  Google Scholar 

  31. L. Chen, G.D. Smith, R. Harbord, and S.J. Lewis. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Medicine, 5:e52, 2008.

    Article  PubMed  Google Scholar 

  32. A.A. Balke and J. Pearl. Counterfactual probabilities: computational methods, bounds and applications. In R.L. Mantaras and D. Poole, editors, Proceedings of the 10th Conference on Uncertainty in Artificial Inteligence, 46–54, 1994.

    Google Scholar 

  33. N.J. Timpson, D.A. Lawlor, R.M. Harbord, T.R. Gaunt, I.N.M. Day, L.J. Palmer, A.T. Hattersley, S. Ebrahim, G.D.O. Lowe, A. Rumpley, and G.D. Smith. C-reactive protein and its role in metabolic syndrome: a Mendelian randomisation study. Lancet, 366:1954–1959, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. J.M. Robins. Correcting for non-compliance in randomized trials using structural nested mean models. Communications in Statistics, 23:2379–2412, 1994.

    Article  Google Scholar 

  35. S. Vansteelandt and E. Goetghebeur. Causal inference with generalized structural mean models. Journal of the Royal Statistical Society, Series B, 65:817–835, 2003.

    Article  Google Scholar 

  36. P. Clarke and F. Windmeijer. Instrumental variable estimators for binary outcomes. Working Paper 10/239, Centre for Market and Public Organisation, University of Bristol, 2010.

    Google Scholar 

  37. D. Nitsch, M. Molokhia, L. Smeeth, B.L. DeStavola, J.C. Whittaker, and D.A. Leon. Limits to causal inference based on Mendelian randomization: a comparison with randomised controlled trials. American Journal of Epi­demiology, 163:397–403, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge research support for all authors from the Medical Research Council through a collaborative project grant (G0601625) addressing causal inference in observational epidemiology using Mendelian randomisation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sheehan, N.A., Meng, S., Didelez, V. (2011). Mendelian Randomisation: A Tool for Assessing Causality in Observational Epidemiology. In: Teare, M. (eds) Genetic Epidemiology. Methods in Molecular Biology, vol 713. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-416-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-416-6_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-415-9

  • Online ISBN: 978-1-60327-416-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics