Skip to main content

Chromosome Conformation Capture (from 3C to 5C) and Its ChIP-Based Modification

  • Protocol
  • First Online:
Chromatin Immunoprecipitation Assays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

Chromosome conformation capture (3C) methodology was developed to study spatial organization of long genomic regions in living cells. Briefly, chromatin is fixed with formaldehyde in vivo to cross-link interacting sites, digested with a restriction enzyme and ligated at a low DNA concentration so that ligation between cross-linked fragments is favored over ligation between random fragments. Ligation products are then analyzed and quantified by PCR. So far, semi-quantitative PCR methods were widely used to estimate the ligation frequencies. However, it is often important to estimate the ligation frequencies more precisely which is only possible by using the real-time PCR. At the same time, it is equally necessary to monitor the specificity of PCR amplification. That is why the real-time PCR with TaqMan probes is becoming more and more popular in 3C studies. In this chapter, we describe the general protocol for 3C analysis with the subsequent estimation of ligation frequencies by using the real-time PCR technology with TaqMan probes. We discuss in details all steps of the experimental procedure paying special attention to weak points and possible ways to solve the problems. A special attention is also paid to the problems in interpretation of the results and necessary control experiments. Besides, in theory, we consider other approaches to analysis of the ligation products used in frames of the so-called 4C and 5C methods. The recently developed chromatin immunoprecipitation (ChIP)-loop assay representing a combination of 3C and ChIP is also discussed.

An erratum to this chapter is available at 10.1007/978-1-60327-414-2_17

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-60327-414-2_17

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science 295, 1306–1311.

    Article  PubMed  CAS  Google Scholar 

  2. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  3. Eivazova, E. R. and Aune, T. M. (2004) Dynamic alterations in the conformation of the Ifng gene region during T helper cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 101, 251–256.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, Z. and Garrard, W. T. (2005) Long-range interactions between three transcriptional enhancers, active V gene promoters, and a 3' boundary sequence spanning 46 kilobases. Mol. Cell. Biol. 25, 3220–3231.

    Article  PubMed  CAS  Google Scholar 

  5. Gavrilov, A. A. and Razin, S. V. (2008) Spatial configuration of the chicken α-globin gene domain: immature and active chromatin hubs Nucleic Acids Res 36, 4629–40.

    Article  PubMed  CAS  Google Scholar 

  6. Spilianakis, C. G. and Flavell, R. A. (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  7. Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F. and de Laat, W. (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194.

    Article  PubMed  CAS  Google Scholar 

  8. Vakoc, C., Letting, D. L., Gheldof, N., Sawado, T., Bender, M. A., Groudine, M., Weiss, M. J., Dekker, J. and Blobel, G. A. (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462.

    Article  PubMed  CAS  Google Scholar 

  9. Zhou, G. L., Xin, L., Song, W., Di, L. J., Liu, G., Wu, X. S., Liu, D. P. and Liang, C. C. (2006) Active chromatin hub of the mouse alpha-globin locus forms in a transcription factory of clustered housekeeping genes. Mol. Cell Biol. 26, 5096–5105.

    Article  PubMed  CAS  Google Scholar 

  10. Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G. and Higgs, D. R. (2007) Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041–2051.

    Article  PubMed  CAS  Google Scholar 

  11. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. and Flavell, R. A. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.

    Article  PubMed  CAS  Google Scholar 

  12. Ling, J. Q., Li, T., Hu, J. F., Vu, T. H., Chen, H. L., Qiu, X. W., Cherry, A. M. and Hoffman, A. R. (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao, Z., Tavoosidana, G., Sjölinder, M., Göndör, A., Mariano, P., Wang, S., Kanduri, C., Lezcano, M., Sandhu, K. S., Singh, U., Pant, V., Tiwari, V., Kurukuti, S. and Ohlsson, R. (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions Nat. Genet. 38, 1341–1347.

    Article  PubMed  Google Scholar 

  14. Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B. and de Laat, W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354.

    Article  PubMed  CAS  Google Scholar 

  15. Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., Green, R. D. and Dekker, J. (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  16. Horike, S., Cai, S., Miyano, M., Cheng, J. F. and Kohwi-Shigematsu, T. (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet. 37, 31–40.

    Article  PubMed  CAS  Google Scholar 

  17. Cai, S., Lee, C. C. and Kohwi-Shigematsu, T. (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1229–1230.

    Article  Google Scholar 

  18. Kurukuti, S., Tiwari, V. K., Tavoosidana, G., Pugacheva, E., Murrell, A., Zhao, Z., Lobanenkov, V., Reik, W. and Ohlsson, R. (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc. Natl. Acad. Sci. U.S.A. 103, 10684–10689.

    Article  PubMed  CAS  Google Scholar 

  19. Splinter, E., Heath, H., Kooren, J., Palstra, R. J., Klous, P., Grosveld, F., Galjart, N. and de Laat, W. (2006) CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev. 20, 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  20. Splinter, E., Grosveld, F. and de Laat, W. (2004) 3C technology: Analyzing the spatial organization of genomic loci in vivo. Methods Enzymol. 375, 493–507.

    Article  PubMed  CAS  Google Scholar 

  21. Wurtele, H. and Chartrand, P. (2006) Genome-wide scanning of HoxB1-associated loci in mouse ES cells using an open-ended Chromosome Conformation Capture methodology. Chromosome Res. 14, 477–495.

    Article  PubMed  Google Scholar 

  22. Dekker, J. (2006) The 3 C's of Chromosome Conformation Capture: controls, controls, controls. Nat. Methods 3, 17–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gavrilov, A., Eivazova, E., Pirozhkova, I., Lipinski, M., Razin, S., Vassetzky, Y. (2009). Chromosome Conformation Capture (from 3C to 5C) and Its ChIP-Based Modification. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics