Advertisement

Study of Polytopic Membrane Protein Topological Organization as a Function of Membrane Lipid Composition

  • Mikhail Bogdanov
  • Philip N. Heacock
  • William Dowhan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 619)

Abstract

A protocol is described using lipid mutants and thiol-specific chemical reagents to study lipid-dependent and host-specific membrane protein topogenesis by the substituted-cysteine accessibility method as applied to transmembrane domains (SCAM™). SCAM™ is adapted to follow changes in membrane protein topology as a function of changes in membrane lipid composition. The strategy described can be adapted to any membrane system.

Key words

Membrane protein topology lipid-dependent topogenesis phospholipids lactose permease SCAM™ 

Notes

Acknowledgements

This work was supported by NIH grant GM20478 and funds from the John S. Dunn Foundation awarded to W. D.

References

  1. 1.
    Drews, J. (2006) What’s in a number? Nat. Rev. Drug Discov. 5, 975.CrossRefPubMedGoogle Scholar
  2. 2.
    Goder, V., Junne, T. and Spiess, M. (2004) Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol. Biol. Cell 15, 1470–1478.CrossRefPubMedGoogle Scholar
  3. 3.
    Bogdanov, M., Heacock, P.N. and Dowhan, W. (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 21, 2107–2116.CrossRefPubMedGoogle Scholar
  4. 4.
    Bogdanov, M., Mileykovskaya, E. and Dowhan, W. (2008) Lipids in the Assembly of Membrane Proteins and Organization of Protein Supercomplexes: Implications for Lipid-linked Disorders. Subcell. Biochem. 49, 197–239.CrossRefPubMedGoogle Scholar
  5. 5.
    Bogdanov, M., Xie, J., Heacock, P. and Dowhan, W. (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J. Cell Biol. 182, 925–935.CrossRefPubMedGoogle Scholar
  6. 6.
    Bogdanov, M., Zhang, W., Xie, J. and Dowhan, W. (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM™): application to lipid-specific membrane protein topogenesis. Methods 36, 148–171.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang, X., Bogdanov, M. and Dowhan, W. (2002) Topology of polytopic membrane protein subdomains is dictated by membrane phospholipid composition. EMBO J. 21, 5673–5681.CrossRefPubMedGoogle Scholar
  8. 8.
    Xie, J., Bogdanov, M., Heacock, P. and Dowhan, W. (2006) Phosphatidylethanolamine and monoglucosyldiacylglycerol are interchangeable in supporting topogenesis and function of the polytopic membrane protein lactose permease. J. Biol. Chem. 281, 19172–19178.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang, W., Bogdanov, M., Pi, J., Pittard, A.J. and Dowhan, W. (2003) Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J. Biol. Chem. 278, 50128–50135.CrossRefPubMedGoogle Scholar
  10. 10.
    Dowhan, W. (2009) Molecular Genetic Approaches to Defining Lipid Function. J. Lipid Res. 50, S305–S310.Google Scholar
  11. 11.
    van Iwaarden, P.R., Pastore, J.C., Konings, W.N. and Kaback, H.R. (1991) Construction of a functional lactose permease devoid of cysteine residues. Biochemistry 30, 9595–9600.CrossRefPubMedGoogle Scholar
  12. 12.
    Frillingos, S., Sahin-Toth, M., Wu, J. and Kaback, H.R. (1998) Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. Faseb J. 12, 1281–1299.PubMedGoogle Scholar
  13. 13.
    Elofsson, A. and von Heijne, G. (2007) Membrane Protein Structure: Prediction vs Reality. Annu. Rev. Biochem. 76, 125–140.CrossRefPubMedGoogle Scholar
  14. 14.
    DeChavigny, A., Heacock, P.N. and Dowhan, W. (1991) Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J. Biol. Chem. 266, 5323–5332.PubMedGoogle Scholar
  15. 15.
    Mileykovskaya, E. and Dowhan, W. (2005) Role of membrane lipids in bacterial division site selection. Curr. Opin. Microbiol. 8, 135–142.CrossRefPubMedGoogle Scholar
  16. 16.
    Rietveld, A.G., Chupin, V.V., Koorengevel, M.C., Wienk, H.L., Dowhan, W. and de Kruijff, B. (1994) Regulation of lipid polymorphism is essential for the viability of phosphatidylethanolamine-deficient Escherichia coli cells. J. Biol. Chem. 269, 28670–28675.PubMedGoogle Scholar
  17. 17.
    Wikström, M., Xie, J., Bogdanov, M., Mileykovskaya, E., Heacock, P., Wieslander, Å. and Dowhan, W. (2004) Monoglucosyldiacylglycerol, a foreign lipid, can substitute for phosphatidylethanolamine in essential membrane-associated functions in Escherichia coli. J. Biol. Chem. 279, 10484–10493.CrossRefPubMedGoogle Scholar
  18. 18.
    Wikström, M., Kelly, A., Georgiev, A., Eriksson, H., Rosen-Klement, M., Bogdanov, M., Dowhan, W. and Wieslander, Å. (2009) Lipid-engineered Escherichia coli membranes reveal critical lipid head-group size for protein function. J. Biol. Chem. 284, 954–965.Google Scholar
  19. 19.
    Zhang, W., Campbell, H.A., King, S.C. and Dowhan, W. (2005) Phospholipids as determinants of membrane protein topology. Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J. Biol. Chem. 280, 26032–26038.CrossRefPubMedGoogle Scholar
  20. 20.
    Sato, Y., Zhang, Y.W., A., A.-T. and Rudnick, G. (2004) Analysis of transmembrane domain 2 of rat serotonin transporter by cysteine scanning mutagenesis. J. Biol. Chem. 279, 22926–22933.Google Scholar
  21. 21.
    Wada, T., Long, J.C., Zhang, D. and Vik, S.B. (1999) A novel labeling approach supports the five-transmembrane model of subunit a of the Escherichia coli ATP synthase. J. Biol. Chem. 274, 17353–17357.CrossRefPubMedGoogle Scholar
  22. 22.
    Cao, W. and Matherly, L.H. (2003) Characterization of a cysteine-less human reduced folate carrier: localization of a substrate-binding domain by cysteine-scanning mutagenesis and cysteine accessibility methods. Biochem. J. 374, 27–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu, Q., Lee, D.W. and Casey, J.R. (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J. Biol. Chem. 278, 3112–3120.CrossRefPubMedGoogle Scholar
  24. 24.
    Fujihira, E., Tamura, N. and Yamaguchi, A. (2002) Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli. J. Biochem. 131, 145–151.PubMedGoogle Scholar
  25. 25.
    Long, J.C., DeLeon-Rangel, J. and Vik, S.B. (2002) Characterization of the first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase by surface labeling, cross-linking, and mutagenesis. J. Biol. Chem. 277, 27288–27293.CrossRefPubMedGoogle Scholar
  26. 26.
    Valiyaveetil, F.I. and Fillingame, R.H. (1998) Transmembrane topography of subunit a in the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 273, 16241–16247.CrossRefPubMedGoogle Scholar
  27. 27.
    Lasso, G., Antoniw, J.F. and Mullins, G.L. (2006) A combinatorial pattern discovery approach for the prediction of membrane dipping (re-entrant) loops. Bioinformatics 22, 290–297.CrossRefGoogle Scholar
  28. 28.
    Gafvelin, G. and von Heijne, G. (1994) Topological “frustration” in multispanning E. coli inner membrane proteins. Cell 77, 401–412.CrossRefPubMedGoogle Scholar
  29. 29.
    Kimura, T., Ohnuma, M., Sawai, T. and Yamaguchi, A. (1997) Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. J. Biol. Chem. 272, 580–585.CrossRefPubMedGoogle Scholar
  30. 30.
    Martinez-Morales, F., Schobert, M., Lopez-Lara, I.M. and Geiger, O. (2003) Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149, 3461–3471.CrossRefPubMedGoogle Scholar
  31. 31.
    Shiba, Y., Yokoyama, Y., Aono, Y., Kiuchi, T., Kusaka, J., Matsumoto, K. and Hara, H. (2004) Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J. Bacteriol. 186, 6526–6535.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mikhail Bogdanov
    • 1
  • Philip N. Heacock
    • 1
  • William Dowhan
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Texas Medical SchoolHoustonUSA

Personalised recommendations