Skip to main content

Trapping Oxidative Folding Intermediates During Translocation to the Intermembrane Space of Mitochondria: In Vivo and In Vitro Studies

  • Protocol
  • First Online:
Book cover Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 619))

Abstract

The MIA40 pathway is a novel import pathway in mitochondria specific for cysteine-rich proteins of the intermembrane space (IMS). The newly synthesised precursors are trapped in the IMS by a disulfide relay mechanism that involves introduction of disulfides from the sulfhydryl oxidase Erv1 to the redox-regulated import receptor Mia40 and then on to the substrate. This thiol–disulfide exchange mechanism is essential for the import and oxidative folding of the incoming cysteine-rich substrate proteins. In this chapter we will describe the experimental methods that have been developed in order to study and characterise disulfide-trapped intermediates in yeast mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardwell, J. C. (1994) Building bridges: disulphide bond formation in the cell. Mol Microbiol 14, 199–205.

    Article  CAS  PubMed  Google Scholar 

  2. Kadokura, H., Katzen, F., and Beckwith, J. (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72, 111–135.

    Article  CAS  PubMed  Google Scholar 

  3. Nakamoto, H., and Bardwell, J. C. (2004) Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694, 111–119.

    Article  CAS  PubMed  Google Scholar 

  4. Ritz, D., and Beckwith, J. (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55, 21–48.

    Article  CAS  PubMed  Google Scholar 

  5. Sevier, C. S., and Kaiser, C. A. (2002) Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3, 836–847.

    Article  CAS  PubMed  Google Scholar 

  6. Sevier, C. S., and Kaiser, C. A. (2006) Conservation and diversity of the cellular disulfide bond formation pathways. Antioxid Redox Signal 8, 797–811.

    Article  CAS  PubMed  Google Scholar 

  7. Allen, S., Lu, H., Thornton, D., and Tokatlidis, K. (2003) Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10. J Biol Chem 278, 38505–38513.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, H., Allen, S., Wardleworth, L., Savory, P., and Tokatlidis, K. (2004) Functional TIM10 chaperone assembly is redox-regulated in vivo. J Biol Chem 279, 18952–18958.

    Article  CAS  PubMed  Google Scholar 

  9. Mesecke, N., Terziyska, N., Kozany, C., Baumann, F., Neupert, W., Hell, K., and Herrmann, J. M. (2005) A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell 121, 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  10. Webb, C. T., Gorman, M. A., Lazarou, M., Ryan, M. T., and Gulbis, J. M. (2006) Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell 21, 123–133.

    Article  CAS  PubMed  Google Scholar 

  11. Benz, R. (1994) Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta 1197, 167–196.

    CAS  PubMed  Google Scholar 

  12. Chacinska, A., Pfannschmidt, S., Wiedemann, N., Kozjak, V., Sanjuan Szklarz, L. K., Schulze-Specking, A., Truscott, K. N., Guiard, B., Meisinger, C., and Pfanner, N. (2004) Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J 23, 3735–3746.

    Article  CAS  PubMed  Google Scholar 

  13. Grumbt, B., Stroobant, V., Terziyska, N., Israel, L., and Hell, K. (2007) Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. J Biol Chem 282, 37461–37470.

    Article  CAS  PubMed  Google Scholar 

  14. Hofmann, S., Rothbauer, U., Muhlenbein, N., Baiker, K., Hell, K., and Bauer, M. F. (2005) Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space. J Mol Biol 353, 517–528.

    Article  CAS  PubMed  Google Scholar 

  15. Naoe, M., Ohwa, Y., Ishikawa, D., Ohshima, C., Nishikawa, S., Yamamoto, H., and Endo, T. (2004) Identification of Tim40 that mediates protein sorting to the mitochondrial intermembrane space. J Biol Chem 279, 47815–47821.

    Article  CAS  PubMed  Google Scholar 

  16. Rissler, M., Wiedemann, N., Pfannschmidt, S., Gabriel, K., Guiard, B., Pfanner, N., and Chacinska, A. (2005) The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. J Mol Biol 353, 485–492.

    Article  CAS  PubMed  Google Scholar 

  17. Terziyska, N., Lutz, T., Kozany, C., Mokranjac, D., Mesecke, N., Neupert, W., Herrmann, J. M., and Hell, K. (2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett 579, 179–184.

    Article  CAS  PubMed  Google Scholar 

  18. Hell, K. (2008) The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Biochim Biophys Acta 1783, 601–609.

    Article  CAS  PubMed  Google Scholar 

  19. Lee, J., Hofhaus, G., and Lisowsky, T. (2000) Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS Lett 477, 62–66.

    Article  CAS  PubMed  Google Scholar 

  20. Muller, J. M., Milenkovic, D., Guiard, B., Pfanner, N., and Chacinska, A. (2008) Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol Biol Cell 19, 226–236.

    Article  PubMed  Google Scholar 

  21. Allen, S., Balabanidou, V., Sideris, D. P., Lisowsky, T., and Tokatlidis, K. (2005) Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. J Mol Biol 353, 937–944.

    Article  CAS  PubMed  Google Scholar 

  22. Bihlmaier, K., Mesecke, N., Terziyska, N., Bien, M., Hell, K., and Herrmann, J. M. (2007) The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol 179, 389–395.

    Article  CAS  PubMed  Google Scholar 

  23. Dabir, D. V., Leverich, E. P., Kim, S. K., Tsai, F. D., Hirasawa, M., Knaff, D. B., and Koehler, C. M. (2007) A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J 26, 4801–4811.

    Article  CAS  PubMed  Google Scholar 

  24. Milenkovic, D., Gabriel, K., Guiard, B., Schulze-Specking, A., Pfanner, N., and Chacinska, A. (2007) Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. J Biol Chem 282, 22472–22480.

    Article  CAS  PubMed  Google Scholar 

  25. Sideris, D. P., and Tokatlidis, K. (2007) Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Mol Microbiol 65, 1360–1373.

    Article  CAS  PubMed  Google Scholar 

  26. Curran, S. P., Leuenberger, D., Oppliger, W., and Koehler, C. M. (2002) The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. Embo J 21, 942–953.

    Article  CAS  PubMed  Google Scholar 

  27. Curran, S. P., Leuenberger, D., Schmidt, E., and Koehler, C. M. (2002) The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol 158, 1017–1027.

    Article  CAS  PubMed  Google Scholar 

  28. Luciano, P., Vial, S., Vergnolle, M. A., Dyall, S. D., Robinson, D. R., and Tokatlidis, K. (2001) Functional reconstitution of the import of the yeast ADP/ATP carrier mediated by the TIM10 complex. EMBO J 20, 4099–4106.

    Article  CAS  PubMed  Google Scholar 

  29. Vergnolle, M. A., Baud, C., Golovanov, A. P., Alcock, F., Luciano, P., Lian, L. Y., and Tokatlidis, K. (2005) Distinct domains of small Tims involved in subunit interaction and substrate recognition. J Mol Biol 351, 839–849.

    Article  CAS  PubMed  Google Scholar 

  30. Lu, H., Golovanov, A. P., Alcock, F., Grossmann, J. G., Allen, S., Lian, L. Y., and Tokatlidis, K. (2004) The structural basis of the TIM10 chaperone assembly. J Biol Chem 279, 18959–18966.

    Article  CAS  PubMed  Google Scholar 

  31. Vergnolle, M. A., Alcock, F. H., Petrakis, N., and Tokatlidis, K. (2007) Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells. J Mol Biol 371, 1315–1324.

    Article  CAS  PubMed  Google Scholar 

  32. Vial, S., Lu, H., Allen, S., Savory, P., Thornton, D., Sheehan, J., and Tokatlidis, K. (2002) Assembly of Tim9 and Tim10 into a functional chaperone. J Biol Chem 277, 36100–36108.

    Article  CAS  PubMed  Google Scholar 

  33. Glick, B. S. (1991) Protein import into isolated yeast mitochondria. Methods Cell Biol 34, 389–399.

    Article  CAS  PubMed  Google Scholar 

  34. Tokatlidis, K. (2000) Directing proteins to mitochondria by fusion to mitochondrial targeting signals. Methods Enzymol 327, 305–317.

    Article  CAS  PubMed  Google Scholar 

  35. Luciano, P., Tokatlidis, K., Chambre, I., Germanique, J. C., and Geli, V. (1998) The mitochondrial processing peptidase behaves as a zinc-metallopeptidase. J Mol Biol 280, 193–199.

    Article  CAS  PubMed  Google Scholar 

  36. Schagger, H., Cramer, W. A., and von Jagow, G. (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217, 220–230.

    Article  CAS  PubMed  Google Scholar 

  37. Schagger, H., and von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199, 223–231.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by intramural funds from IMBB-FORTH, the University of Crete and the European Social Fund and national resources (to KT). DS was supported by a PENED grant. We are grateful to members of our lab for comments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sideris, D.P., Tokatlidis, K. (2010). Trapping Oxidative Folding Intermediates During Translocation to the Intermembrane Space of Mitochondria: In Vivo and In Vitro Studies. In: Economou, A. (eds) Protein Secretion. Methods in Molecular Biology, vol 619. Humana Press. https://doi.org/10.1007/978-1-60327-412-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-412-8_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-167-7

  • Online ISBN: 978-1-60327-412-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics