Skip to main content

High-Quality Immunofluorescence of Cultured Cells

  • Protocol
  • First Online:
Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 619))

Abstract

Immunofluorescence microscopy of cultured cells often gives poor preservation of delicate structures. We have obtained dramatically improved results with a simple modification of a standard protocol. Cells growing on a coverslip are rapidly dehydrated in a cold organic solvent and then are rehydrated in a solution containing a homobifunctional crosslinker. The crosslinking reaction stabilizes cellular structures during subsequent incubation and wash steps, usually without compromising antigenicity. This method reproducibly yields high-quality images of endomembrane compartments and cytoskeletal elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donaldson, J.G. (1998) Immunofluorescence Staining, in Current Protocols in Cell Biology. John Wiley & Sons. pp. 4.3.1–4.3.6.

    Google Scholar 

  2. Bhattacharyya, D. and Glick, B.S. (2007) Two mammalian Sec16 homologs have nonredundant functions in ER export and transitional ER organization. Mol. Biol. Cell. 18, 839–849.

    Article  CAS  PubMed  Google Scholar 

  3. Hammond, A.T. and Glick, B.S. (2000) Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell. 11, 3013–3030.

    CAS  PubMed  Google Scholar 

  4. Melan, M.A. and Sluder, G. (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells. Implications for immunofluorescence microscopy. J. Cell Sci. 101, 731–743.

    PubMed  Google Scholar 

  5. Staudt, T., Lang, M. C., Medda, R., Engelhardt, J., and Hell, S.W. (2007) 2,2'-Thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc. Res. Tech. 70, 1–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tang, B.L., et al. (1997) The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus. Mol. Cell. Biol. 17, 256–266.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant GM-61156. The anti-Sec13 antibody was a kind gift of Bor Luen Tang and Wanjin Hong (National University of Singapore).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bhattacharyya, D., Hammond, A.T., Glick, B.S. (2010). High-Quality Immunofluorescence of Cultured Cells. In: Economou, A. (eds) Protein Secretion. Methods in Molecular Biology, vol 619. Humana Press. https://doi.org/10.1007/978-1-60327-412-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-412-8_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-167-7

  • Online ISBN: 978-1-60327-412-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics