Site-Specific Cross-Linking of In Vitro Synthesized E. coli Preproteins for Investigating Transmembrane Translocation Pathways

  • Sascha Panahandeh
  • Matthias Müller
Part of the Methods in Molecular Biology book series (MIMB, volume 619)


A method is described for the preparation and usage of an E. coli cell-free translation system primed to incorporate the commercially available photoreactive analogue of phenyalanine, pBpa, into newly synthesized proteins. Incorporation is achieved by means of an amber suppressor tRNA specifically charged with pBpa. The method is exemplified for the site-specific photocross-linking of the signal sequence of a Tat (twin-arginine translocation) precursor protein to the Tat translocase in the cytoplasmic membrane of E. coli.

Key words

Site-specific cross-linking photoprobes p-benzoyl-phenylalanine amber suppressor twin-arginine translocation Tat protein export in vitro transcription-translation system inner membrane vesicles Escherichia coli 



We gratefully acknowledge Dr. Peter Schultz, The Scripps Research Institute, La Jolla, for providing suppressor plasmids. This work was supported by grant LSHG-CT-2004-05257 of the European Union and grants from the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 388 and Graduiertenkolleg 434).


  1. 1.
    Krieg, U. C., Walter, P., and Johnson, A. E. (1986) Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl. Acad. Sci. USA 83, 8604–8608.CrossRefPubMedGoogle Scholar
  2. 2.
    High, S., Martoglio, B., Gorlich, D., Andersen, S. S., Ashford, A. J., Giner, A., Hartmann, E., Prehn, S., Rapoport, T. A., Dobberstein, B., and Brunner, J. (1993) Site-specific photocross-linking reveals that Sec61p and TRAM contact different regions of a membrane-inserted signal sequence. J. Biol. Chem. 268, 26745–26751.PubMedGoogle Scholar
  3. 3.
    Martoglio, B., Hofmann, M. W., Brunner, J., and Dobberstein, B. (1995) The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207–214.CrossRefPubMedGoogle Scholar
  4. 4.
    Do, H., Falcone, D., Lin, J., Andrews, D. W., and Johnson, A. E. (1996) The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378.CrossRefPubMedGoogle Scholar
  5. 5.
    Wiedmann, M., Kurzchalia, T. V., Bielka, H., and Rapoport, T. A. (1987) Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking. J. Cell Biol. 104, 201–208.CrossRefPubMedGoogle Scholar
  6. 6.
    Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H., and Rapoport, T. A. (1986) The signal sequence of nascent preprolactin interacts with the 54 K polypeptide of the signal recognition particle. Nature 320, 634–636.CrossRefPubMedGoogle Scholar
  7. 7.
    Valent, Q. A., de Gier, J.-W. L., von Heijne, G., Kendall, D. A., ten Hagen-Jongman, C. M., Oudega, B., and Luirink, J. (1997) Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25, 53–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Houben, E. N., Urbanus, M. L., Van Der Laan, M., Ten Hagen-Jongman, C. M., Driessen, A. J., Brunner, J., Oudega, B., and Luirink, J. (2002) YidC and SecY mediate membrane insertion of a Type I transmembrane domain. J. Biol. Chem. 277, 35880–35886.CrossRefPubMedGoogle Scholar
  9. 9.
    Beck, K., Eisner, G., Trescher, D., Dalbey, R. E., Brunner, J., and Müller, M. (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep. 2, 709–714.CrossRefPubMedGoogle Scholar
  10. 10.
    Beck, K., Wu, L. F., Brunner, J., and Müller, M. (2000) Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J. 19, 134–143.CrossRefPubMedGoogle Scholar
  11. 11.
    Berks, B. C., Palmer, T., and Sargent, F. (2003) The Tat protein translocation pathway and its role in microbial physiology. Adv. Microb. Physiol. 47, 187–254.CrossRefPubMedGoogle Scholar
  12. 12.
    Lee, P. A., Tullman-Ercek, D., and Georgiou, G. (2006) The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol. 60, 373–395.CrossRefPubMedGoogle Scholar
  13. 13.
    Müller, M., and Klösgen, R. B. (2005) The Tat pathway in bacteria and chloroplasts. Mol. Membr. Biol. 22, 113–121.CrossRefPubMedGoogle Scholar
  14. 14.
    Robinson, C., and Bolhuis, A. (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim. Biophys. Acta 1694, 135–147.CrossRefPubMedGoogle Scholar
  15. 15.
    Alami, M., Lüke, I., Deitermann, S., Eisner, G., Koch, H. G., Brunner, J., and Müller, M. (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12, 937–946.CrossRefPubMedGoogle Scholar
  16. 16.
    Holzapfel, E., Eisner, G., Alami, M., Barrett, C. M., Buchanan, G., Lüke, I., Betton, J. M., Robinson, C., Palmer, T., Moser, M., and Müller, M. (2007) The entire N-terminal half of TatC is involved in twin-arginine precursor binding. Biochemistry 46, 2892–2898.CrossRefPubMedGoogle Scholar
  17. 17.
    Chin, J. W., Martin, A. B., King, D. S., Wang, L., and Schultz, P. G. (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 11020–11024.CrossRefPubMedGoogle Scholar
  18. 18.
    Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.CrossRefPubMedGoogle Scholar
  19. 19.
    Farrell, I. S., Toroney, R., Hazen, J. L., Mehl, R. A., and Chin, J. W. (2005) Photo-cross-linking interacting proteins with a genetically encoded benzophenone. Nat. Methods 2, 377–384.CrossRefPubMedGoogle Scholar
  20. 20.
    Ryu, Y., and Schultz, P. G. (2006) Efficient incorporation of unnatural amino acids into proteins in Escherichia coli. Nat. Methods 3, 263–265.CrossRefPubMedGoogle Scholar
  21. 21.
    Maneewannakul, S., Maneewannakul, K., and Ippen-Ihler, K. (1994) The pKSM710 vector cassette provides tightly regulated lac and T7lac promoters and strategies for manipulating N-terminal protein sequences. Plasmid 31, 300–307.CrossRefPubMedGoogle Scholar
  22. 22.
    Dorman, G., and Prestwich, G. D. (1994) Benzophenone photophores in biochemistry. Biochemistry 33, 5661–5673.CrossRefPubMedGoogle Scholar
  23. 23.
    Casadaban, M. J., and Cohen, S. N. (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. USA 76, 4530–4533.CrossRefPubMedGoogle Scholar
  24. 24.
    Alami, M., Trescher, D., Wu, L. F., and Müller, M. (2002) Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J. Biol. Chem. 277, 20499–20503.CrossRefPubMedGoogle Scholar
  25. 25.
    Wexler, M., Sargent, F., Jack, R. L., Stanley, N. R., Bogsch, E. G., Robinson, C., Berks, B. C., and Palmer, T. (2000) TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in Sec-independent protein export. J. Biol. Chem. 275, 16717–16722.CrossRefPubMedGoogle Scholar
  26. 26.
    Cline, K., and Mori, H. (2001) Thylakoid DeltapH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport. J. Cell Biol. 154, 719–729.CrossRefPubMedGoogle Scholar
  27. 27.
    Gerard, F., and Cline, K. (2006) Efficient twin arginine translocation (Tat) pathway transport of a precursor protein covalently anchored to its initial cpTatC binding site. J. Biol. Chem. 281, 6130–6135.CrossRefPubMedGoogle Scholar
  28. 28.
    Panahandeh, S., Maurer, C., Moser, M., Delisa, M. P., and Müller, M. (2008) Following the path of a twin-arginine precursor along the TatABC translocase of Escherichia coli. J. Biol. Chem. 33267–33275.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sascha Panahandeh
    • 1
  • Matthias Müller
    • 2
  1. 1.Institute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgGermany
  2. 2.Institute of Biochemistry and Molecular Biology, ZBMZUniversity of FreiburgFreiburgGermany

Personalised recommendations