Skip to main content

Flow Cytometric Studies on Intracellular Drug Fluorescence

  • Protocol
Techniques in Cell Cycle Analysis

Part of the book series: Biological Methods ((BM))

Abstract

Flow cytometry has rapidly evolved from a technique for detecting and sorting cells on the basis of their DNA content or immunological markers into a useful tool for detection and quantitation of intracellular drug fluorescence (2,25,30,37). Recent studies have shown that intracellular content of fluorescent drugs can be rapidly quantitated on a cell-to-cell basis by this sophisticated analytical method. Thus, one can analyze intracellular drug transport (influx, efflux), retention, and/or binding, and correlate these parameters with effects on cellular metabolism and proliferation (21,22).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachur, N., Gordon, S., and Gree, M. V. A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res., 38: 1745–1750, 1978.

    PubMed  CAS  Google Scholar 

  2. Barlogie, B., Raber, M. N., Schumann, J., Johnson, T. S., Drewinko, B., Swartzendruber, D. E., Gohde, W., Andreeff, M., and Freireich, E. J. Flow cytometry in clinical cancer research. Cancer Res., 43: 3982–3997, 1983.

    PubMed  CAS  Google Scholar 

  3. Beck, W. T., Mueller, T. J., and Tanzer, L. R. Altered surface membrane glycoproteins in vinca alkaloid-resistant human leukemic lymphoblasts (CCRF-CEM). Cancer Res., 39: 2070–2076, 1976.

    Google Scholar 

  4. Bertino, J. R. The mechanism of action of the folate antagonists in man. Cancer Res., 23: 1286–1306, 1963.

    PubMed  CAS  Google Scholar 

  5. Bertino, J. R. “Rescue” techniques in cancer chemotherapy: Use of leucovorin and other agents after methotrexate treatment. Semin. Oncol., 4: 203–216, 1977.

    PubMed  CAS  Google Scholar 

  6. Crooke, S. T. and Reich, S. D., eds. Anthracyclines: Current Status and New Developments. New York: Academic, 1980.

    Google Scholar 

  7. Dano, K. Active outward transport of daunomycin resistant Ehrlich ascites tumor cells. Biochem. Biophys. Acta, 323: 466–483, 1973.

    Article  PubMed  CAS  Google Scholar 

  8. Darzynkiewicz, Z., Rogers, A. W., Barnard, E. A., Wang, D., and Werkheiser, W. C. Autoradiography with tritiated methotrexate and the cellular distribution of folate reductase. Science, 151: 1528–1530, 1966.

    Article  PubMed  CAS  Google Scholar 

  9. Durand, R. E. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res., 41: 3495–3498, 1981.

    PubMed  CAS  Google Scholar 

  10. Durand, R. E. and Olive, P. L. Flow cytometry studies of intracellular adriamycin in single cells in vitro. Cancer Res., 41: 3489–3494, 1981.

    PubMed  CAS  Google Scholar 

  11. Egorin, M., Hildebrand, R. C., Cimino, E. F., and Bachur, N. Cytofluorescence localization of adriamycin and daunomycin. Cancer Res., 34: 2243–2245, 1974.

    PubMed  CAS  Google Scholar 

  12. Ganapathi, R. and Grabowski, D. Enhancement of sensitivity to adriamycin in resistant P388 leukemia by the calmodulin inhibitor tri-fluoperazine. Cancer Res., 43: 3696–3699, 1983.

    PubMed  CAS  Google Scholar 

  13. Ganapathi, R., Reiter, W., and Krishan, A. Comparative studies on intracellular adriamycin levels and cytotoxicity in sensitive and resistant P388 leukemia cells. J. Natl. Cancer Inst., 68: 1027–1031, 1982.

    PubMed  CAS  Google Scholar 

  14. Gapski, G. R., Whitely, J. M., Rader, J. J., Gramer, P. L., Henderson, G. B., Neef, V., and Huennekins, F. M. Synthesis of a fluorescent derivative of amethopterin. J. Med. Chem., 18: 526–528, 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Garman, D. and Center, M. S. Alterations in cell surface membranes in Chinese hamster lung cell resistant to adriamycin. Biochem. Biophys. Res. Commun., 105: 157–163, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Haber, D. A. and Schimke, R. T. Unstable amplification of an altered dihydrofolate reductase gene associated with double-minute chromosomes. Cell, 26: 355–362, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Inaba, M. and Johnson, R. K. Uptake and retention of adriamycin and daunorubicin by sensitive and anthracycline resistant sublines of P388 leukemia. Biochem. Parmacol., 27: 2123–2130, 1978.

    Article  CAS  Google Scholar 

  18. Juliano, R. L. and Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochem. Biophys. Acta, 455: 152–162, 1976.

    Article  PubMed  CAS  Google Scholar 

  19. Krishan, A. and Bourguignon, L. Y. W. Cell cycle phenothiazine effects on adriamycin transport. Cell Biol. Int. Rep., 8: 449–456, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Krishan, A. and Frei, E. III. Effect of adriamycin on the cell cycle traverse and kinetics of cultured human lymphoblasts. Cancer Res., 36: 143–150, 1976.

    PubMed  CAS  Google Scholar 

  21. Krishan, A. and Ganapathi, R. Laser flow cytometry and cancer chemotherapy: Detection of intracellular anthracyclines for flow cytometry. J. Histochem. Cytochem., 27: 1655–1656, 1979.

    PubMed  CAS  Google Scholar 

  22. Krishan, A. and Ganapathi, R. Laser flow cytometric studies on intercellular fluorescence of anthracyclines. Cancer Res., 40: 3895–3900, 1980.

    PubMed  CAS  Google Scholar 

  23. Krishan, A., Ganapathi, R., and Israel, M. Effect of adriamycin and analogs on nuclear fluorescence of propidium iodide stained cells. Cancer Res., 38: 3656–3662, 1978.

    PubMed  CAS  Google Scholar 

  24. Krishan, A., Israel, M., Modest, E. J., and Frei III, E. Differences in cellular uptake and cytofluorescence of adriamycin and N-trifluoro-acetyladriamycin-14-valerate. Cancer Res., 36: 2114–2116, 1976.

    Google Scholar 

  25. Krishan, A., Pitman, S. W., Tattersall, M. H. N., Paika, K. D., Smith, D. C., and Frei III, E. Flow microfluorometric patterns of human bone marrow and tumor cells in response to cancer chemotherapy. Cancer Res., 36: 3813–3820, 1976.

    PubMed  CAS  Google Scholar 

  26. Krishan, A., Sauerteig, A., and Wellham, L. L. Flow cytometric studies on modulation of cellular adriamycin retention by phenothiazines. Cancer Res., 45: 1046–1051, 1985.

    PubMed  CAS  Google Scholar 

  27. Kaufman, R. J., Bertino, J. R., and Schimke, R. T. Quantitation of dihydrofolate reductase in individual parental and methotrexate-resistant murine cells. J. Biol. Chem., 253: 5852–5860, 1978.

    PubMed  CAS  Google Scholar 

  28. Kaufman, R. J. and Schimke, R. T. Amplification and loss of dihydro-folate reductase genes in a Chinese hamster ovary cell line. Mol. Cell Biol., 1: 1069–1076, 1981.

    PubMed  CAS  Google Scholar 

  29. Mariani, B. D., Slate, D. L., and Schimke, R. T. S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, 78: 4985–4989, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Melamed, M. R., Mullaney, P. F., and Mendelsohn, M. L., eds. Flow Cytometry and Sorting. New York: John Wiley, 1979.

    Google Scholar 

  31. Muirhead, K. A., Freyer, J. P., and Sutherland, R. M. Distribution of adriamycin within tumor spheroids. Cytometry, 2: 115, 1981.

    Google Scholar 

  32. Peters, D. C. A comparison of mercury arc lamp and laser illumination for flow cytometers. J. Histochem. Cytochem., 27: 241–245, 1979.

    PubMed  CAS  Google Scholar 

  33. Preisler, H. D. Alteration of binding of the supravital Dye Hoechst 33342 to human leukemic cells by adriamycin. Cancer Treatment Rep., 62: 1393, 1978.

    CAS  Google Scholar 

  34. Raju, M. R., Johnson, T. S., Tokita, N., and Gillette, E. L. Flow cytometric applications to tumour biology: Prospects and pitfalls. Brit. J. Cancer, 41: 171–176, 1980.

    Google Scholar 

  35. Rosowsky, A., Wright, J. E., Shapiro, H., Beardsley, P., and Lazarus, H. A new fluorescent dihydrofolate reductase probe for studies of methotrexate resistance. J. Biol. Chem., 257: 14162–14167, 1982.

    PubMed  CAS  Google Scholar 

  36. Rosowsky, A., personal communication.

    Google Scholar 

  37. Shapiro, H. M. Multistation multiparameter flow cytometry: A critical review and rationale. Cytometry, 3: 227–243, 1983.

    Article  PubMed  CAS  Google Scholar 

  38. Skogen-Hagenson, M. J., Salzman, G. C., Mullaney, P. F., and Brockman, W. H. A high efficiency flow cytometer. J. Histochem. Cytochem., 25: 784–789, 1977.

    PubMed  CAS  Google Scholar 

  39. Skovsgaard, T. and Nissen, N. Adriamycin, an antitumour antibiotic: A review with special reference to daunomycin. Dan. Med. Bui., 22: 62–73, 1975.

    CAS  Google Scholar 

  40. Tapiero, H., Fourcade, A., Vaigot, P., and Farhi, J. J. Comparative uptake of adriamycin and daunorubicin in sensitive and resistant Friend leukemia cells measured by flow cytometry. Cytometry, 2: 298–302, 1982.

    Article  PubMed  CAS  Google Scholar 

  41. Tokita, N. and Raju, M. R. Cell-cycle dependency of adriamycin uptake in Chinese hamster cells. Eur. J. Cancer Clin. Oncol., 19: 547, 1983.

    Article  PubMed  CAS  Google Scholar 

  42. Tritton, T. R., Murphree, S. A., and Sartorelli, A. C. Adriamycin: A proposal on the specificity of drug action. Biochem. Biophys. Res. Commun., 84: 802–808, 1978.

    Article  PubMed  CAS  Google Scholar 

  43. Tsuruo, T., Lida, H., Yamashiro, M., Tsukagoshi, S., and Sakurai, Y. Enhancement of vincristine-and adriamycin-induced cytotoxicity by verapamil in P388 leukemia and its sublines resistant to vincristine and adriamycin. Biochem. Pharmacol., 31: 3138–3140, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joe W. Gray Zbigniew Darzynkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this protocol

Cite this protocol

Krishan, A. (1987). Flow Cytometric Studies on Intracellular Drug Fluorescence. In: Gray, J.W., Darzynkiewicz, Z. (eds) Techniques in Cell Cycle Analysis. Biological Methods. Humana Press. https://doi.org/10.1007/978-1-60327-406-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-406-7_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-097-8

  • Online ISBN: 978-1-60327-406-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics