Skip to main content

Antimicrobial Peptide Arrays for Detection of Inactivated Biothreat Agents

  • Protocol
  • First Online:
Book cover Peptide Microarrays

Abstract

Arrays of immobilized antimicrobial peptides are used to detect bacterial, viral, and rickettsial pathogens, including inactivated biothreat agents. These arrays differ from the many combinatorial peptide arrays described in the literature in that the peptides used here have naturally evolved to interact with and disrupt microbial membranes with high affinity but broad specificity. The interaction of these naturally occurring peptides with membranes of pathogens has been harnessed for the purpose of detection, with immobilized antimicrobial peptides acting as “capture” molecules in detection assays. Methods are presented for immobilizing the antimicrobial peptides in planar arrays, performing direct and sandwich assays, and detecting bound targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wadkins, R. M., Golden, J. P., Pritsiolas, L. M., and Ligler, F. S. (1998) Detection of multiple toxic agents using a planar array. Biosens Bioelectron 13, 407–415.

    Article  CAS  Google Scholar 

  2. Rowe, C.A., Scruggs, S.B., Feldstein, M.J., Golden, J.P., and Ligler, F.S. (1999) An array immunosensor for simultaneous detection of clinical analytes. Anal Chem 71, 433–439.

    Article  PubMed  CAS  Google Scholar 

  3. Sapsford, K.E., Charles, P.T., Patterson, C.H. Jr., and Ligler, F.S. (2002) Demonstration of four immunoassay formats using the array biosensor. Anal Chem 74, 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  4. Ligler, F.S., Sapsford, K.E., Golden, J.P., Shriver-Lake, L.C., Taitt, C.R., Hanson, W., Barone, S., Myatt, C.J. (2007) The Array Biosensors: Portable, automated systems. Anal Sci 23, 5–10.

    Article  PubMed  Google Scholar 

  5. Shriver-Lake, L.C., Erickson, J.S., Sapsford, K.E., Ngundi, M.M., Shaffer, K.M., Kulagina, N.V., Hu, J.E., Gray, S.A. III, Golden, J.P., Ligler, F.S., and Taitt, C.R. (2007) Blind laboratory trials for multiple pathogens in spiked food matrices. Anal Lett 40, 3219–3231.

    Article  CAS  Google Scholar 

  6. Rodriguez, M., Li, S.S.-C., Harper, J. W., and Songyan, Z. (2004) An oriented peptide array library (OPAL) strategy to study protein–protein interactions. J Biol Chem 279, 8802–8807.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, R., Pan, S., Brentnall, T.A, and Aebersold, R. (2005) Proteomic profiling of pancreatic cancer for biomarker discovery. Mol Cell Proteom 4.4, 523–533.

    Article  Google Scholar 

  8. Rychlewski, L., Kschischo, M., Dong, L., Schutkowski, M., and Reimer, U. (2004) Target specificity analysis of the Abl kinase using peptide microarray data. J Mol Biol 336, 307–311.

    Article  PubMed  CAS  Google Scholar 

  9. Beernink, H.T.H. and Nock, S. (2005) Challenges facing the development and use of protein chips to analyze the phosphoproteome. Exp Rev Proteomics 2, 487–497.

    Article  CAS  Google Scholar 

  10. Diaz-Mochón, J.J., Bialy, L, and Bradley, M. (2006) Dual colour, microarray-based, analysis of 10000 protease substrates. Chem Commun 38, 3984–3986.

    Article  Google Scholar 

  11. Robinson, W.H., Steinman, L., and Utz, P.J. (2002) Protein and peptide array analysis of autoimmune disease. BioTechniques 33, S66–S69.

    Google Scholar 

  12. Okochi, M., Nakanishi, M., Kato, R., Kobayashi, T., and Honda, H. (2006) High-throughput screening of cell death inducible short peptides from TNF-related apoptosis-inducing ligand sequence. FEBS Lett 580, 885–889.

    Article  Google Scholar 

  13. Bolger, G.B., Baillie, G.S., Li, X., Lynch, M.J., Herzyk, P., Mohamed, A., Mitchell, L.H. McCahill, A., Hundsrucker, C., Klussmann, E., Adams, D.R., and Houslay, M.D. (2006) Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, β-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Biochem J 398, 23–36.

    Article  PubMed  CAS  Google Scholar 

  14. Rigter, A., Langeveld, J.P.M, Timmers-Parohi, D., Jacobs, J.G., Moonen, P.L.J.M., and Bossers, A. (2007) Mapping of possible prion protein self-interaction domains using peptide arrays. BMC Biochemistry 8, 6-1–6-14.

    Google Scholar 

  15. Hancock, R.E.W., and Chapple, D.S. (1999) Peptide antibiotics. Antimicrob Agents Chemother 43, 1317–1323.

    PubMed  CAS  Google Scholar 

  16. Matsuzaki, K. (2001) Why and how are peptide–lipid interactions utilized for self defence? Biochem Soc Trans 29, 598–601.

    Article  PubMed  CAS  Google Scholar 

  17. Papo, N. and Shai, Y. (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42, 458–466.

    Article  PubMed  CAS  Google Scholar 

  18. Haukland, H. H., Ulvatne, H., Sandvik, K. and Vorland, L. H. (2001) The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508, 389–393.

    Article  PubMed  CAS  Google Scholar 

  19. Hsu, C.H., Chen, C., Jou, M.L., Lee, A.Y., Lin, Y.C., Yu, Y.P., Huang, W.T., and Wu, S.H. (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33, 4053–64.

    Article  PubMed  CAS  Google Scholar 

  20. James, E.A., Schmeltzer, K., and Ligler, F.S. (1996) Detection of endotoxin using an evanescent wave fiber-optic biosensor. Appl Biochem Biotechnol 60, 189–202.

    Article  PubMed  CAS  Google Scholar 

  21. Gregory, K. and Mello, C.M. (2005) Immobilization of Escherichia coli cells by use of the antimicrobial peptide cecropin P1. Appl Environ Microbiol 71, 1130–1134.

    Article  PubMed  CAS  Google Scholar 

  22. Kulagina, N.V., Lassman, M.E., Ligler, F.S., and Taitt, C.R. (2005) Use of an antimicrobial peptide for detection of bacteria in biosensor assays. Anal Chem 77, 6504–6508.

    Article  PubMed  CAS  Google Scholar 

  23. Kulagina, N.V., Shaffer, K.M., Anderson, G.P., Ligler, F.S., and Taitt, C.R. (2006) Antimicrobial peptide-based array for E. coli and Salmonella screening. Anal Chim Acta 575, 9–15.

    Article  PubMed  CAS  Google Scholar 

  24. Kulagina, N.K., Shaffer, K.M., Ligler, F.S., and Taitt, C.R. (2007) Antimicrobial peptides, new recognition molecules for challenging targets. Sens Actuators B 121, 150–157.

    Article  Google Scholar 

  25. Kulagina, N.V., Anderson, G.P., Ligler, F.S., Shaffer, K.M., and Taitt, C.R. (2007) Antimicrobial peptides: New recognition molecules for detecting botulinum toxins. Sensors 7, 2808–2824.

    Article  CAS  Google Scholar 

  26. Feldstein, M.J., Golden, J.P., Rowe, C.A., MacCraith, B.D., and Ligler, F.S. (1999) Array Biosensor: Optical and fluidics systems. J Biomed Microdevices 1, 139–153.

    Article  CAS  Google Scholar 

  27. Taitt, C.R., Anderson, G.P., Lingerfelt, B.M., Feldstein, M.J., and Ligler F.S. (2002) Nine-analyte detection using an array-based biosensor. Anal Chem 74, 6114–6120.

    Article  PubMed  CAS  Google Scholar 

  28. Feldstein, M.J., Golden, J.P., Ligler, F.S., Rowe, C.A. (2000) Optical waveguide-Flow cell integration method. US Patent 6,192,168, issued 24 Oct 2000.

    Google Scholar 

  29. Ngundi, M.M., Taitt, C.R., and Ligler, F.S. (2006) Simultaneous determination of kinetic parameters for the binding of cholera toxin to immobilized sialic acid and monoclonal antibodies using an array biosensor. Biosens Bioelectron 22, 124–130.

    Article  PubMed  CAS  Google Scholar 

  30. Cras, J. J., Rowe-Taitt, C. A., Nivens, D. A., and Ligler, F. S. (1999) Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens Bioelectron 14, 683–688.

    Article  CAS  Google Scholar 

  31. Ngundi, M.M., Taitt, C.R., Ligler, F.S. (2007) Crosslinkers modify affinity of immobilized carbohydrates for cholera toxin. Sens Lett 5, 621–624.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of Joint Science and Technology Office for Chemical and Biological Defense/Defense Threat Reduction Agency (#AA04DET005, 8.10016_08_NRL_B) and the National Institutes of Health (R01 EB00680). NVK was a recipient of a National Research Council fellowship. The views expressed herein are those of the authors and do not represent those of the US Navy, the US Department of Defense, or the US government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Taitt, C.R., North, S.H., Kulagina, N.V. (2009). Antimicrobial Peptide Arrays for Detection of Inactivated Biothreat Agents. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology™, vol 570. Humana Press. https://doi.org/10.1007/978-1-60327-394-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-394-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-393-0

  • Online ISBN: 978-1-60327-394-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics