Skip to main content

Exploring and Profiling Protein Function with Peptide Arrays

  • Protocol
  • First Online:
Peptide Microarrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 570))

Abstract

Development of array technologies started in the late 1980s and was first extensively applied to DNA arrays especially in the genomic field. Today this technique has become a powerful tool for high-throughput approaches in biology and chemistry. Progresses were mainly driven by the human genome project and were associated with the development of several new technologies, which led to the onset of additional “omic” topics like proteomics, glycomics, antibodyomics or lipidomics. The main characteristics of the array technology are (i) spatially addressable immobilization of a huge number of different capture molecules; (ii) probing the array in a simultaneous and highly parallel manner with a biological sample; (iii) tendency towards miniaturization of the arrays; and (iv) software-supported read-out and data analysis. We review some general concepts about peptide arrays on planar supports and point out technical aspects concerning the generation of peptide microarrays. Finally, we discuss recent applications by describing relevant literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier, F. F., von Nickisch-Rosenegk, M., Ehrentreich-Forster, E., Reiss, E., Henkel, J., Strehlow, R., and Andresen, D. (2008) DNA microarrays, Adv Biochem Eng Biotechnol 109, 433–53.

    PubMed  CAS  Google Scholar 

  2. Southern, E. M. (2001) DNA microarrays. History and overview, Methods Mol Biol 170, 1–15.

    PubMed  CAS  Google Scholar 

  3. DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., and Trent, J. M. (1996) Use of a cDNA microarray to analyse gene expression patterns in human cancer, Nat Genet 14, 457–60.

    PubMed  CAS  Google Scholar 

  4. Szathmary, E., and Smith, J. M. (1995) The major evolutionary transitions, Nature 374, 227–32.

    PubMed  CAS  Google Scholar 

  5. Anderson, L., and Seilhamer, J. (1997) A comparison of selected mRNA and protein abundances in human liver, Electrophoresis 18, 533–7.

    PubMed  CAS  Google Scholar 

  6. Chen, G., Gharib, T. G., Huang, C. C., Thomas, D. G., Shedden, K. A., Taylor, J. M., Kardia, S. L., Misek, D. E., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M., and Beer, D. G. (2002) Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors, Clin Cancer Res 8, 2298–305.

    PubMed  CAS  Google Scholar 

  7. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast, Mol Cell Biol 19, 1720–30.

    PubMed  CAS  Google Scholar 

  8. Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J. C., Yan, J. X., Gooley, A. A., Hughes, G., Humphery-Smith, I., Williams, K. L., and Hochstrasser, D. F. (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis, Biotechnology (NY) 14, 61–5.

    CAS  Google Scholar 

  9. Aebersold, R. (2003) Constellations in a cellular universe, Nature 422, 115–16.

    PubMed  CAS  Google Scholar 

  10. Phizicky, E., Bastiaens, P. I. H., Zhu, H., Snyder, M., and Fields, S. (2003) Protein analysis on a proteomic scale, Nature 422, 208–15.

    PubMed  CAS  Google Scholar 

  11. MacBeath, G., and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination, Science 289, 1760–3.

    PubMed  CAS  Google Scholar 

  12. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M., and Snyder, M. (2001) Global analysis of protein activities using proteome chips, Science 293, 2101–5.

    PubMed  CAS  Google Scholar 

  13. Zhu, H., Klemic, J. F., Chang, S., Bertone, P., Casamayor, A., Klemic, K. G., Smith, D., Gerstein, M., Reed, M. A., and Snyder, M. (2000) Analysis of yeast protein kinases using protein chips, Nat Genet 26, 283–9.

    PubMed  CAS  Google Scholar 

  14. Frank, R., Güler, S., Krause, S., and Lindenmaier, W. (1991) Facile and rapid spot-synthesis of large numbers of peptides on membrane sheets., in “Peptides 1990, Proc 21st Eur Peptide Symp.” (Giralt, E., and Andreu, D., Eds.), pp. 151–52, ESCOM Science Publishers B. V., Leiden.

    Google Scholar 

  15. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis, Science 251, 767–73.

    PubMed  CAS  Google Scholar 

  16. Gutte, B., and Merrifield, R. B. (1969) The total synthesis of an enzyme with ribonuclease A activity, J Am Chem Soc 91, 501–2.

    PubMed  CAS  Google Scholar 

  17. Merrifield, R. B. (1965) Automated synthesis of peptides, Science 150, 178–85.

    PubMed  CAS  Google Scholar 

  18. Fields, G. B., and Noble, R. L. (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids, Int J Pept Protein Res 35, 161–214.

    PubMed  CAS  Google Scholar 

  19. Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid, Proc Natl Acad Sci USA 81, 3998–4002.

    PubMed  CAS  Google Scholar 

  20. Frank, R. (1992) Spot-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support, Tetrahedron, 9217–32.

    Google Scholar 

  21. Frank, R. (2002) The SPOT-synthesis technique: synthetic peptide arrays on membrane supports–principles and applications, J. Immunol. Methods 267, 13–26.

    PubMed  CAS  Google Scholar 

  22. Goede, A., Jaeger, I. S., and Preissner, R. (2005) SUPERFICIAL–surface mapping of proteins via structure-based peptide library design, BMC Bioinformatics 6, 223.

    PubMed  Google Scholar 

  23. Ekins, R. P. (1998) Ligand assays: from electrophoresis to miniaturized microarrays, Clin Chem 44, 2015–30.

    PubMed  CAS  Google Scholar 

  24. Ekins, R., Chu, F., and Biggart, E. (1990) Multispot, multianalyte, immunoassay, Ann Biol Clin (Paris) 48, 655–66.

    CAS  Google Scholar 

  25. Ekins, R. P. (1989) Multi-analyte immunoassay, J Pharm Biomed Anal 7, 155–68.

    PubMed  CAS  Google Scholar 

  26. Joos, T. O., Stoll, D., and Templin, M. F. (2002) Miniaturised multiplexed immunoassays, Curr Opin Chem Biol 6, 76–80.

    PubMed  CAS  Google Scholar 

  27. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C. F., and Joos, T. O. (2002) Protein microarray technology, Drug Discov Today 7, 815–22.

    PubMed  CAS  Google Scholar 

  28. Reimer, U., Reineke, U., and Schneider-Mergener, J. (2002) Peptide arrays: from macro to micro, Curr Opin Biotechnol 13, 315–20.

    PubMed  CAS  Google Scholar 

  29. Schutkowski, M., Reimer, U., Panse, S., Dong, L., Lizcano, J. M., Alessi, D. R., and Schneider-Mergener, J. (2004) High-content peptide microarrays for deciphering kinase specificity and biology, Angew Chem Int Ed Engl 43, 2671–4.

    PubMed  CAS  Google Scholar 

  30. El Khoury, G., Laurenceau, E., Dugas, V., Chevolot, Y., Merieux, Y., Duclos, M. C., Souteyrand, E., Rigal, D., Wallach, J., and Cloarec, J. P. (2007) Acid deprotection of covalently immobilized peptide probes on glass slides for peptide microarrays, Conf Proc IEEE Eng Med Biol Soc 2007, 2242–6.

    PubMed  Google Scholar 

  31. Gao, X., Pellois, J. P., Na, Y., Kim, Y., Gulari, E., and Zhou, X. (2004) High density peptide microarrays. In situ synthesis and applications, Mol Divers 8, 177–87.

    PubMed  CAS  Google Scholar 

  32. Pellois, J. P., Wang, W., and Gao, X. (2000) Peptide synthesis based on t-Boc chemistry and solution photogenerated acids, J Comb Chem 2, 355–60.

    PubMed  CAS  Google Scholar 

  33. Pellois, J. P., Zhou, X., Srivannavit, O., Zhou, T., Gulari, E., and Gao, X. (2002) Individually addressable parallel peptide synthesis on microchips, Nat Biotechnol 20, 922–6.

    PubMed  CAS  Google Scholar 

  34. Eichler, J., Beyermann, M., and Bienert, M. (1989) Application of cellulose paper as support in simultaneous solid phase peptide synthesis, Colect Czech Chem Commun 54, 1746–52.

    CAS  Google Scholar 

  35. Frank, R., and Döring, R. (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper disks as segmental solid supports, Tetrahedron 44, 6031–40.

    CAS  Google Scholar 

  36. Eichler, J., Bienert, M., Stierandova, A., and Lebl, M. (1991) Evaluation of cotton as a carrier for solid-phase peptide synthesis, Peptide Res 4, 296–307.

    CAS  Google Scholar 

  37. Schmidt, M., and Eichler, J. (1993) Multiple peptide synthesis using cellulose-based carriers: synthesis of substance P – diastereoisomers and their histamine-releasing activity, Bioorg Med Chem Lett 3, 441–46.

    CAS  Google Scholar 

  38. Daniels, S. B., Bernatowicz, M. S., Coull, J. M., and Köster, H. (1989) Membranes as solid supports for peptide synthesis, Tetrahedron Lett 30, 4345–48.

    Google Scholar 

  39. Wang, Z., and Laursen, R. A. (1992) Multiple peptide synthesis on polypropylene membranes for rapid screening of bioactive peptides, Pep Res 5, 275–80.

    CAS  Google Scholar 

  40. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides, Biopolymers 55, 188–206.

    PubMed  CAS  Google Scholar 

  41. Falsey, J. R., Renil, M., Park, S., Li, S., and Lam, K. S. (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays, Bioconjug Chem 12, 346–53.

    PubMed  CAS  Google Scholar 

  42. Houseman, B. T., Huh, J. H., Kron, S. J., and Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity, Nat Biotechnol 20, 270–4.

    PubMed  CAS  Google Scholar 

  43. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I. et al. (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology, Biotechniques 11, 620–7.

    PubMed  CAS  Google Scholar 

  44. Malmqvist, M. (1993) Biospecific interaction analysis using biosensor technology, Nature 361, 186–7.

    PubMed  CAS  Google Scholar 

  45. Angenendt, P., and Glokler, J. (2004) Evaluation of antibodies and microarray coatings as a prerequisite for the generation of optimized antibody microarrays, Methods Mol Biol 264, 123–34.

    PubMed  CAS  Google Scholar 

  46. Angenendt, P., Glokler, J., Murphy, D., Lehrach, H., and Cahill, D. J. (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials, Anal Biochem 309, 253–60.

    PubMed  CAS  Google Scholar 

  47. Angenendt, P., Glokler, J., Sobek, J., Lehrach, H., and Cahill, D. J. (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications, J Chromatogr A 1009, 97–104.

    PubMed  CAS  Google Scholar 

  48. Seurynck-Servoss, S. L., Baird, C. L., Miller, K. D., Pefaur, N. B., Gonzalez, R. M., Apiyo, D. O., Engelmann, H. E., Srivastava, S., Kagan, J., Rodland, K. D., and Zangar, R. C. (2008) Immobilization strategies for single-chain antibody microarrays, Proteomics 8, 2199–210.

    PubMed  CAS  Google Scholar 

  49. Seurynck-Servoss, S. L., Baird, C. L., Rodland, K. D., and Zangar, R. C. (2007) Surface chemistries for antibody microarrays, Front Biosci 12, 3956–64.

    PubMed  CAS  Google Scholar 

  50. Seurynck-Servoss, S. L., White, A. M., Baird, C. L., Rodland, K. D., and Zangar, R. C. (2007) Evaluation of surface chemistries for antibody microarrays, Anal Biochem 371, 105–15.

    PubMed  CAS  Google Scholar 

  51. Sobek, J., Aquino, C., and Schlapbach, R. (2007) Quality considerations and selection of surface chemistry for glass-based DNA, peptide, antibody, carbohydrate, and small molecule microarrays, Methods Mol Biol 382, 17–31.

    PubMed  CAS  Google Scholar 

  52. Sobek, J., Bartscherer, K., Jacob, A., Hoheisel, J. D., and Angenendt, P. (2006) Microarray technology as a universal tool for high-throughput analysis of biological systems, Comb Chem High Throughput Screen 9, 365–80.

    PubMed  CAS  Google Scholar 

  53. Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology, Curr Opin Biotechnol 12, 59–64.

    PubMed  CAS  Google Scholar 

  54. Frank, R. (2002) High-density synthetic peptide microarrays: emerging tools for functional genomics and proteomics, Comb Chem High Throughput Screen 5, 429–40.

    PubMed  CAS  Google Scholar 

  55. Frank, R., and Overwin, H. (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes, Methods Mol Biol 66, 149–69.

    PubMed  CAS  Google Scholar 

  56. Hilpert, K., Winkler, D. F., and Hancock, R. E. (2007) Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion, Nat Protoc 2, 1333–49.

    PubMed  CAS  Google Scholar 

  57. Kramer, A., and Schneider-Mergener, J. (1998) Synthesis and screening of peptide libraries on continuous cellulose membrane supports, Methods Mol Biol 87, 25–39.

    PubMed  CAS  Google Scholar 

  58. Winkler, D. F., and Campbell, W. D. (2008) The spot technique the spot technique: synthesis and screening of peptide macroarrays on cellulose membranes, Methods Mol Biol 494, 47–70.

    PubMed  CAS  Google Scholar 

  59. Ay, B., Landgraf, K., Streitz, M., Fuhrmann, S., Volkmer, R., and Boisguerin, P. (2008) Using hydroxymethylphenoxy derivates with the SPOT technology to generate peptides with authentic C-termini, Bioorg Med Chem Lett 18, 4038–43.

    PubMed  CAS  Google Scholar 

  60. Ay, B., Streitz, M., Boisguerin, P., Schlosser, A., Mahrenholz, C. C., Schuck, S. D., Kern, F., and Volkmer, R. (2007) Sorting and pooling strategy: a novel tool to map a virus proteome for CD8 T-cell epitopes, Biopolymers 88, 64–75.

    PubMed  CAS  Google Scholar 

  61. Ay, B., Volkmer, R., and Boisguerin, P. (2007) Synthesis of cleavable peptides with authentic C-termini: an application for fully automated SPOT synthesis, Tetrahedron Letters 48, 361–64.

    CAS  Google Scholar 

  62. Volkmer-Engert, R., Hoffmann, B., and Schneider-Mergener, J. (1997) Stable attachment of the HMB-linker to continuous cellulose membranes for parallel solid phase spot synthesis, Tetrahedron Lett 38, 1029–32.

    CAS  Google Scholar 

  63. Kramer, A., Reineke, U., Dong, L., Hoffmann, B., Hoffmuller, U., Winkler, D., Volkmer-Engert, R., and Schneider-Mergener, J. (1999) Spot synthesis: observations and optimizations, J Pept Res 54, 319–27.

    PubMed  CAS  Google Scholar 

  64. Weiser, A. A., Or-Guil, M., Tapia, V., Leichsenring, A., Schuchhardt, J., Frommel, C., and Volkmer-Engert, R. (2005) SPOT synthesis: reliability of array-based measurement of peptide binding affinity, Anal Biochem 342, 300–11.

    PubMed  CAS  Google Scholar 

  65. Boisguerin, P., Ay, B., Radziwill, G., Fritz, R. D., Moelling, K., and Volkmer, R. (2007) Characterization of a putative phosphorylation switch: adaptation of SPOT synthesis to analyze PDZ domain regulation mechanisms, Chembiochem 8, 2302–7.

    PubMed  CAS  Google Scholar 

  66. Wiedemann, U., Boisguerin, P., Leben, R., Leitner, D., Krause, G., Moelling, K., Volkmer-Engert, R., and Oschkinat, H. (2004) Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides, J Mol Biol 343, 703–18.

    PubMed  CAS  Google Scholar 

  67. Fodor, S. P., Rava, R. P., Huang, X. C., Pease, A. C., Holmes, C. P., and Adams, C. L. (1993) Multiplexed biochemical assays with biological chips, Nature 364, 555–6.

    PubMed  CAS  Google Scholar 

  68. Stears, R. L., Martinsky, T., and Schena, M. (2003) Trends in microarray analysis, Nat Med 9, 140–5.

    PubMed  CAS  Google Scholar 

  69. MacBeath, G. (2007) Protein Arrays: Preparation of Microscope Slides, Cold Spring Harb. Protoc., doi:10.1101/pdb.prot4629.

    Google Scholar 

  70. Angenendt, P. (2005) Progress in protein and antibody microarray technology, Drug Discov Today 10, 503–11.

    PubMed  CAS  Google Scholar 

  71. Chatterjee, D. K., Sitaraman, K., Baptista, C., Hartley, J., Hill, T. M., and Munroe, D. J. (2008) Protein microarray on-demand: a novel protein microarray system, PLoS ONE 3, e3265.

    PubMed  Google Scholar 

  72. Hartmann, M., Roeraade, J., Stoll, D., Templin, M. F., and Joos, T. O. (2009) Protein microarrays for diagnostic assays, Anal Bioanal Chem 393, 1407–16.

    Google Scholar 

  73. Borgia, J. A., and Fields, G. B. (2000) Chemical synthesis of proteins, Trends Biotechnol 18, 243–51.

    PubMed  CAS  Google Scholar 

  74. Muir, T. W., Dawson, P. E., and Kent, S. B. (1997) Protein synthesis by chemical ligation of unprotected peptides in aqueous solution, Methods Enzymol 289, 266–98.

    PubMed  CAS  Google Scholar 

  75. Schnolzer, M., and Kent, S. B. (1992) Constructing proteins by dovetailing unprotected synthetic peptides: backbone-engineered HIV protease, Science 256, 221–5.

    PubMed  CAS  Google Scholar 

  76. Hashida, S., Imagawa, M., Inoue, S., Ruan, K. H., and Ishikawa, E. (1984) More useful maleimide compounds for the conjugation of Fab' to horseradish peroxidase through thiol groups in the hinge, J Appl Biochem 6, 56–63.

    PubMed  CAS  Google Scholar 

  77. Inouye, S., and Sato, J. (2008) Recombinant aequorin with a reactive cysteine residue for conjugation with maleimide-activated antibody, Anal Biochem 378, 105–7.

    PubMed  CAS  Google Scholar 

  78. Uto, I., Ishimatsu, T., Hirayama, H., Ueda, S., Tsuruta, J., and Kambara, T. (1991) Determination of urinary Tamm-Horsfall protein by ELISA using a maleimide method for enzyme-antibody conjugation, J Immunol Methods 138, 87–94.

    PubMed  CAS  Google Scholar 

  79. Yoshitake, S., Yamada, Y., Ishikawa, E., and Masseyeff, R. (1979) Conjugation of glucose oxidase from Aspergillus niger and rabbit antibodies using N-hydroxysuccinimide ester of N-(4-carboxycyclohexylmethyl)-maleimide, Eur J Biochem 101, 395–9.

    PubMed  CAS  Google Scholar 

  80. Lesaicherre, M. L., Uttamchandani, M., Chen, G. Y., and Yao, S. Q. (2002) Developing site-specific immobilization strategies of peptides in a microarray, Bioorg Med Chem Lett 12, 2079–83.

    PubMed  CAS  Google Scholar 

  81. Uttamchandani, M., Chen, G. Y., Lesaicherre, M. L., and Yao, S. Q. (2004) Site-specific peptide immobilization strategies for the rapid detection of kinase activity on microarrays, Methods Mol Biol 264, 191–204.

    PubMed  CAS  Google Scholar 

  82. Houseman, B. T., and Mrksich, M. (2002) Towards quantitative assays with peptide chips: a surface engineering approach, Trends Biotechnol 20, 279–81.

    PubMed  CAS  Google Scholar 

  83. MacBeath, G., Koehler, A. N., and Schreiber, S. L. (1999) Printing small molecules as microarrays and detecting protein–ligand interactions en masse, J Am Chem Soc 121, 7967–68.

    CAS  Google Scholar 

  84. Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S. B. (1994) Synthesis of proteins by native chemical ligation, Science 266, 776–9.

    PubMed  CAS  Google Scholar 

  85. Green, N. M., and Toms, E. J. (1973) The properties of subunits of avidin coupled to sepharose, Biochem J 133, 687–700.

    PubMed  CAS  Google Scholar 

  86. Andresen, H., Grotzinger, C., Zarse, K., Kreuzer, O. J., Ehrentreich-Forster, E., and Bier, F. F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics, Proteomics 6, 1376–84.

    PubMed  CAS  Google Scholar 

  87. Andresen, H., Zarse, K., Grotzinger, C., Hollidt, J. M., Ehrentreich-Forster, E., Bier, F. F., and Kreuzer, O. J. (2006) Development of peptide microarrays for epitope mapping of antibodies against the human TSH receptor, J Immunol Methods 315, 11–8.

    PubMed  CAS  Google Scholar 

  88. Lesaicherre, M. L., Lue, R. Y., Chen, G. Y., Zhu, Q., and Yao, S. Q. (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray, J Am Chem Soc 124, 8768–9.

    PubMed  CAS  Google Scholar 

  89. Shin, D. S., Kim, D. H., Chung, W. J., and Lee, Y. S. (2005) Combinatorial solid phase peptide synthesis and bioassays, J Biochem Mol Biol 38, 517–25.

    PubMed  CAS  Google Scholar 

  90. Chiari, M., Cretich, M., Corti, A., Damin, F., Pirri, G., and Longhi, R. (2005) Peptide microarrays for the characterization of antigenic regions of human chromogranin A, Proteomics 5, 3600–3.

    PubMed  CAS  Google Scholar 

  91. Cerecedo, I., Zamora, J., Shreffler, W. G., Lin, J., Bardina, L., Dieguez, M. C., Wang, J., Muriel, A., de la Hoz, B., and Sampson, H. A. (2008) Mapping of the IgE and IgG4 sequential epitopes of milk allergens with a peptide microarray-based immunoassay, J Allergy Clin Immunol 122, 589–94.

    PubMed  CAS  Google Scholar 

  92. Jarvinen, K. M., Beyer, K., Vila, L., Chatchatee, P., Busse, P. J., and Sampson, H. A. (2002) B-cell epitopes as a screening instrument for persistent cow’s milk allergy, J Allergy Clin Immunol 110, 293–7.

    PubMed  CAS  Google Scholar 

  93. Shreffler, W. G., Lencer, D. A., Bardina, L., and Sampson, H. A. (2005) IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2, J Allergy Clin Immunol 116, 893–9.

    PubMed  CAS  Google Scholar 

  94. Komuro, A., Saeki, M., and Kato, S. (1999) Association of two nuclear proteins, Npw38 and NpwBP, via the interaction between the WW domain and a novel proline-rich motif containing glycine and arginine, J Biol Chem 274, 36513–9.

    PubMed  CAS  Google Scholar 

  95. Tessier, P. M., and Lindquist, S. (2007) Prion recognition elements govern nucleation, strain specificity and species barriers, Nature 447, 556–61.

    PubMed  CAS  Google Scholar 

  96. Pawson, T., and Nash, P. (2003) Assembly of cell regulatory systems through protein interaction domains, Science 300, 445–52.

    PubMed  CAS  Google Scholar 

  97. Tong, A. H., Drees, B., Nardelli, G., Bader, G. D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C. W., Fields, S., Boone, C., and Cesareni, G. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules, Science 295, 321–4.

    PubMed  CAS  Google Scholar 

  98. Hu, H., Columbus, J., Zhang, Y., Wu, D., Lian, L., Yang, S., Goodwin, J., Luczak, C., Carter, M., Chen, L., James, M., Davis, R., Sudol, M., Rodwell, J., and Herrero, J. J. (2004) A map of WW domain family interactions, Proteomics 4, 643–55.

    PubMed  CAS  Google Scholar 

  99. Landgraf, C., Panni, S., Montecchi-Palazzi, L., Castagnoli, L., Schneider-Mergener, J., Volkmer-Engert, R., and Cesareni, G. (2004) Protein interaction networks by proteome peptide scanning, PLoS Biol 2, E14.

    PubMed  Google Scholar 

  100. Jones, R. B., Gordus, A., Krall, J. A., and MacBeath, G. (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays, Nature 439, 168–74.

    PubMed  CAS  Google Scholar 

  101. Gordus, A., and MacBeath, G. (2006) Circumventing the problems caused by protein diversity in microarrays: implications for protein interaction networks, J Am Chem Soc 128, 13668–9.

    PubMed  CAS  Google Scholar 

  102. Tapia, V., Bongartz, J., Schutkowski, M., Bruni, N., Weiser, A., Ay, B., Volkmer, R., and Or-Guil, M. (2007) Affinity profiling using the peptide microarray technology: a case study, Anal Biochem 363, 108–18.

    PubMed  CAS  Google Scholar 

  103. Nahtman, T., Jernberg, A., Mahdavifar, S., Zerweck, J., Schutkowski, M., Maeurer, M., and Reilly, M. (2007) Validation of peptide epitope microarray experiments and extraction of quality data, J Immunol Methods 328, 1–13.

    PubMed  CAS  Google Scholar 

  104. Fournel, S., and Muller, S. (2003) Synthetic peptides in the diagnosis of systemic autoimmune diseases, Curr Protein Pept Sci 4, 261–74.

    PubMed  CAS  Google Scholar 

  105. Duburcq, X., Olivier, C., Malingue, F., Desmet, R., Bouzidi, A., Zhou, F., Auriault, C., Gras-Masse, H., and Melnyk, O. (2004) Peptide–protein microarrays for the simultaneous detection of pathogen infections, Bioconjug Chem 15, 307–16.

    PubMed  CAS  Google Scholar 

  106. Durauer, A., Berger, E., Schuster, M., Wasserbauer, E., Himmler, G., Loibner, H., Mudde, G. C., and Jungbauer, A. (2006) Peptide arrays for the determination of humoral responses induced by active immunization with a monoclonal antibody against EpCAM, J Immunol Methods 317, 114–25.

    PubMed  CAS  Google Scholar 

  107. Cohen, I. R. (2007) Biomarkers, self-antigens and the immunological homunculus, J Autoimmun 29, 246–9.

    PubMed  CAS  Google Scholar 

  108. Quintana, F. J., Merbl, Y., Sahar, E., Domany, E., and Cohen, I. R. (2006) Antigen-chip technology for accessing global information about the state of the body, Lupus 15, 428–30.

    PubMed  CAS  Google Scholar 

  109. Quintana, F. J., Hagedorn, P. H., Elizur, G., Merbl, Y., Domany, E., and Cohen, I. R. (2004) Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes, Proc Nattl Acad Sci USA 101(Suppl 2), 14615–21.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Detsche Froschungsgemeinschaft (SFB449) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tapia, V.E., Ay, B., Volkmer, R. (2009). Exploring and Profiling Protein Function with Peptide Arrays. In: Cretich, M., Chiari, M. (eds) Peptide Microarrays. Methods in Molecular Biology™, vol 570. Humana Press. https://doi.org/10.1007/978-1-60327-394-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-394-7_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-393-0

  • Online ISBN: 978-1-60327-394-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics