Skip to main content
Book cover

Rat Genomics pp 389–402Cite as

Genomics Studies of Immune-Mediated Diseases Using the BN–LEW Rat Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 597))

Abstract

LEW and BN rats, that behave in opposite ways for their susceptibility to various immune-mediated diseases, provide a powerful model to investigate the molecular and genetic bases of immune system physiology and dysregulation. Using this model, we addressed the question of the genetic control of central nervous system autoimmunity, of xenobiotic-induced allergic diseases, and of T cell subsets that differ by their cytokine profiles. By linkage analysis and genetic dissection, using a panel of congenic rats, we identified a 120 Kb region on chromosome 9 that controls all these phenotypes, indicating that this region contains a gene or set of genes that plays an important role in the immune system homeostasis and susceptibility to immune mediated diseases. In this review, we will describe these rat genomics studies and will discuss the cellular and genetic factors that may be involved in the differences between these rat strains.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fournie GJ, Cautain B, Xystrakis E, Damoiseaux J, Mas M, Lagrange D, Bernard I, Subra JF, Pelletier L, Druet P, Saoudi A (2001) Cellular and genetic factors involved in the difference between Brown Norway and Lewis rats to develop respectively type-2 and type-1 immune-mediated diseases. Immunol Rev 184:145–160

    Article  PubMed  CAS  Google Scholar 

  2. Murase N, Demetris AJ, Woo J, Tanabe M, Furuya T, Todo S, Starzl TE (1993) Graft-versus-host disease after brown Norway-to-Lewis and Lewis-to-Brown Norway rat intestinal transplantation under FK506. Transplantation 55:1–7

    Article  PubMed  CAS  Google Scholar 

  3. Sergent V, Cautain B, Khalife J, Deslee D, Bastien P, Dao A, Dubremetz JF, Fournie GJ, Saoudi A, Cesbron-Delauw MF (2005) Innate refractoriness of the Lewis rat to toxoplasmosis is a dominant trait that is intrinsic to bone marrow-derived cells. Infect Immun 73:6990–6997

    Article  PubMed  CAS  Google Scholar 

  4. Cavailles P, Sergent V, Bisanz C, Papapietro O, Colacios C, Mas M, Subra JF, Lagrange D, Calise M, Appolinaire S, Faraut T, Druet P, Saoudi A, Bessieres MH, Pipy B, Cesbron-Delauw MF, Fournie GJ (2006) The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms. Proc Natl Acad Sci U S A 103:744–749

    Article  PubMed  CAS  Google Scholar 

  5. Inman RD, Chiu B (2006) Early cytokine profiles in the joint define pathogen clearance and severity of arthritis in Chlamydia-induced arthritis in rats. Arthritis Rheum 54:499–507

    Article  PubMed  CAS  Google Scholar 

  6. Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145

    Article  PubMed  CAS  Google Scholar 

  7. McKnight AJ, Barclay AN, Mason DW (1991) Molecular cloning of rat interleukine 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol 21:1187–1194

    Article  PubMed  CAS  Google Scholar 

  8. Fowell D, McKnight AJ, Powrie F, Dyke R, Mason D (1991) Subsets of CD4+ T cells and their role in the induction and prevention of autoimmunity. Immunol Rev 123:37–64

    Article  PubMed  CAS  Google Scholar 

  9. Del Prete G, De Carli M, Ricci M, Romagnani S (1991) Helper activity for immunoglobulin synthesis of T helper type 1 (Th1) and Th2 human T cell clones: the help of Th1 clones is limited by their cytolytic capacity. J Exp Med 174:809–813

    Article  PubMed  Google Scholar 

  10. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  11. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    Article  PubMed  CAS  Google Scholar 

  12. Weaver CT, Hatton RD, Mangan PR, Harrington LE (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol 25:821–852

    Article  PubMed  CAS  Google Scholar 

  13. O’Garra A (1998) Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283

    Article  PubMed  Google Scholar 

  14. Manetti R, Parronchi P, Giudizi MG, Piccinni M-P, Maggi E, Trinchieri G, Romagnani S (1993) Natural killer cell stimulatory factor (interleukin 12, IL-12) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med 177:1199–1204

    Article  PubMed  CAS  Google Scholar 

  15. Swain SL, Weinberg AD, English M, Huston G (1990) IL-4 directs the development of Th2-like helper effectors. J Immunol 145:3796

    PubMed  CAS  Google Scholar 

  16. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238

    Article  PubMed  CAS  Google Scholar 

  17. Druet P, Ramanathan S, Pelletier L (1996) TH1 and TH2 lymphocytes in autoimmunity. Adv Nephrol Necker Hosp 25:217–241

    PubMed  CAS  Google Scholar 

  18. Akdis CA (2006) Allergy and hypersensitivity: mechanisms of allergic disease. Curr Opin Immunol 18:718–726

    Article  PubMed  CAS  Google Scholar 

  19. Raine CS (1984) Analysis of autoimmune demyelination: its impact upon multiple sclerosis. Lab Invest 50:608–635

    PubMed  CAS  Google Scholar 

  20. Steinman L (1996) Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 95:299–302

    Article  Google Scholar 

  21. Storch MK, Stefferl A, Brehm U, Weissert R, Wallstrom E, Kerschensteiner M, Olsson T, Linington C, Lassmann H (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8:681–694

    Article  PubMed  CAS  Google Scholar 

  22. Mason D (1991) Genetic variation in the stress response: susceptibilty to experimental allergic encephalomyelitis and implications for human inflammatory disease. Immunol Today 12:57–60

    Article  PubMed  CAS  Google Scholar 

  23. Swanborg RH (2001) Experimental autoimmune encephalomyelitis in the rat: lessons in T-cell immunology and autoreactivity. Immunol Rev 184:129–135

    Article  PubMed  CAS  Google Scholar 

  24. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  PubMed  CAS  Google Scholar 

  25. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  26. Ando DG, Clayton J, Kono D, Urban JL, Sercarz EE (1989) Encephalithogenic T cells in the B10.PL model of experimental allergic encephlomyelitis (EAE) are of the Th-1 lymphokine subtype. Cell Immunol 124:132–143

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor RA, Prendergast CT, Sabatos CA, Lau CW, Leech MD, Wraith DC, Anderton SM (2008) Cutting edge: Th1 cells facilitate the entry of Th17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 181:3750–3754

    PubMed  Google Scholar 

  28. Cua DJ, Hinton DR, Stohlman SA (1995) Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. J Immunol 155:4052–4059

    PubMed  CAS  Google Scholar 

  29. Lafaille JJ, Van de Keere F, Hsu AL, Baron JL, Haas W, Raine CS, Tonegawa S (1997) Myelin basic protein-specific T helper (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J Exp Med 186:307–312

    Article  PubMed  CAS  Google Scholar 

  30. Dahlman I, Lorentzen JC, de Graaf KL, Stefferl A, Linington C, Luthman H, Olsson T (1998) Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 28:2188–2196

    Article  PubMed  CAS  Google Scholar 

  31. Dahlman I, Jacobsson L, Glaser A, Lorentzen JC, Andersson M, Luthman H, Olsson T (1999) Genome-wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. J Immunol 162:2581–2588

    PubMed  CAS  Google Scholar 

  32. Dahlman I, Wallstrom E, Weissert R, Storch M, Kornek B, Jacobsson L, Linington C, Luthman H, Lassmann H, Olsson T (1999) Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18. Hum Mol Genet 8:2183–2190

    Article  PubMed  CAS  Google Scholar 

  33. Roth MP, Viratelle C, Dolbois L, Delverdier M, Borot N, Pelletier L, Druet P, Clanet M, Coppin H (1999) A genome-wide search identifies two susceptibility loci for experimental autoimmune encephalomyelitis on rat chromosomes 4 and 10. J Immunol 162:1917–1922

    PubMed  CAS  Google Scholar 

  34. Happ MP, Wettstein P, Dietzschold B, Heber-Katz E (1988) Genetic control of the development of experimental allergic encephalomyelitis in rats: separation of MHC and non-MHC effects. J Immunol 141:1489–1494

    PubMed  CAS  Google Scholar 

  35. Cautain B, Damoiseaux J, Bernard I, van Straaten H, van Breda Vriesman P, Boneu B, Druet P, Saoudi A (2001) Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Eur J Immunol 31:1132–1140

    Article  PubMed  CAS  Google Scholar 

  36. Gillespie KM, Qasim FJ, Tibbats LM, Thiru S, Oliveira DBG, Mathieson PW (1995) Interleukin-4 gene expression in mercury-induced autoimmunity. Scand J Immunol 41:268–272

    Article  PubMed  CAS  Google Scholar 

  37. Gillespie KM, Saoudi A, Kuhn J, Whittle CJ, Druet P, Bellon B, Mathieson PW (1996) Th1/Th2 cytokine gene expression after mercuric chloride in susceptible and resistant rat strains. Eur J Immunol 10:2388–2392

    Article  Google Scholar 

  38. Dubey C, Bellon B, Hirsch F, Kuhn J, Vial M-C, Goldman M, Druet P (1991) Increased expression of class II major histocompatibility complex molecules on B cells in rats susceptible or resistant to HgCl2-induced autoimmunity. Clin Exp Immunol 86:118–125

    Article  PubMed  CAS  Google Scholar 

  39. Prigent P, Saoudi A, Pannetier C, Graber P, Bonnefoy Y, Druet P, Hirsch F (1995) Mercuric chloride, a chemical responsible for Th2-mediated autoimmunity in Brown–Norway rats, directly triggers T cells to produce IL-4. J Clin Invest 96:1484–1489

    Article  PubMed  CAS  Google Scholar 

  40. Saoudi A, Kuhn J, Huygen K, de Kozak Y, Velu T, Goldman M, Druet P, Bellon B (1993) TH2 activated cells prevent experimental autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J Immunol 23:3096–3103

    Article  PubMed  CAS  Google Scholar 

  41. Goldman M, Druet P, Gleichmann E (1991) TH2 cells in systemic autoimmunity: insights from allogeneic diseases and chemically-induced autoimmunity. Immunol Today 12:223–227

    Article  PubMed  CAS  Google Scholar 

  42. Badou A, Pelletier L, Druet P (1997) Th1/Th2 balance in the control of drug-induced autoimmunity. In: Adorini L, Landes RG (eds) vol 8. Company, Austin, Texas, USA, pp 53–69

    Google Scholar 

  43. Kiely PDW, Thiru S, Oliveira DBG (1995) Inflammatory polyarthritis induced by mercuric chloride in the Brown Norway rat. Lab Invest 73:284–293

    PubMed  CAS  Google Scholar 

  44. Kiely PD, Pecht I, Oliveira DB (1997) Mercuric chloride-induced vasculitis in the Brown Norway rat: alpha beta T cell-dependent and -independent phases: role of the mast cell. J Immunol 159:5100–5106

    PubMed  CAS  Google Scholar 

  45. Pelletier L, Pasquier R, Rossert J, Druet P (1987) HgCl2 induces non specific immunosuppression in LEW rats. Eur J Immnol 17:49–54

    Article  CAS  Google Scholar 

  46. Pelletier L, Rossert J, Pasquier R, Villarroya H, Belair M-F, Vial M-C, Oriol R, Druet P (1988) Effect of HgCl2 on experimental allergic encephalomyelitis in Lewis rats. HgCl2-induced downmodulation of the disease. Eur J Immunol 18:243–247

    Article  PubMed  CAS  Google Scholar 

  47. Tournade H, Pelletier L, Guéry JC, Pasquier R, Nochy D, Hinglais N, Guilbert B, Druet P (1991) Experimental gold-induced autoimmunity. Nephrol Dial Transplant 6:621–630

    PubMed  CAS  Google Scholar 

  48. Savignac M, Badou A, Delmas C, Subra JF, De Cramer S, Paulet P, Cassar G, Druet P, Saoudi A, Pelletier L (2001) Gold is a T cell polyclonal activator in BN and LEW rats but favors IL-4 expression only in autoimmune prone BN rats. Eur J Immunol 31:2266–2276

    Article  PubMed  CAS  Google Scholar 

  49. Damoiseaux JG, Cautain B, Bernard I, Mas M, van Breda Vriesman PJ, Druet P, Fournie G, Saoudi A (1999) A dominant role for the thymus and MHC genes in determining the peripheral CD4/CD8 T cell ratio in the rat. J Immunol 163:2983–2989

    PubMed  CAS  Google Scholar 

  50. Cautain B, Damoiseaux J, Bernard I, Xystrakis E, Fournie E, van Breda Vriesman P, Druet P, Saoudi A (2002) The CD8 T cell compartment plays a dominant role in the deficiency of Brown-Norway rats to mount a proper type 1 immune response. J Immunol 168:162–170

    PubMed  CAS  Google Scholar 

  51. Subra JF, Cautain B, Xystrakis E, Mas M, Lagrange D, van der Heijden H, van de Gaar MJ, Druet P, Fournie GJ, Saoudi A, Damoiseaux J (2001) The balance between CD45RChigh and CD45RClow CD4 T cells in rats is intrinsic to bone marrow-derived cells and is genetically controlled. J Immunol 166:2944–2952

    PubMed  CAS  Google Scholar 

  52. Xystrakis E, Cavailles P, Dejean AS, Cautain B, Colacios C, Lagrange D, van de Gaar MJ, Bernard I, Gonzalez-Dunia D, Damoiseaux J, Fournie GJ, Saoudi A (2004) Functional and genetic analysis of two CD8 T cell subsets defined by the level of CD45RC expression in the rat. J Immunol 173:3140–3147

    PubMed  CAS  Google Scholar 

  53. Powrie F, Mason D (1990) OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med 172:1701–1708

    Article  PubMed  CAS  Google Scholar 

  54. Mathieson PW, Thiru S, Oliveira DBG (1993) Regulatory role of OX22high T cells in mercury-induced autoimmunity in the Brown Norway rat. J Exp Med 177:1309–1316

    Article  PubMed  CAS  Google Scholar 

  55. Xystrakis E, Dejean AS, Bernard I, Druet P, Liblau R, Gonzalez-Dunia D, Saoudi A (2004) Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 104:3294–3301

    Article  PubMed  CAS  Google Scholar 

  56. Mas M, Subra JF, Lagrange D, Pilipenko-Appolinaire S, Kermarrec N, Gauguier D, Druet P, Fournie GJ (2000) Rat chromosome 9 bears a major susceptibility locus for IgE response. Eur J Immunol 30:1698–1705

    Article  PubMed  CAS  Google Scholar 

  57. Kermarrec N, Blanpied C, Pelletier L, Feingold N, Mandet C, Druet P, Hirsch F (1995) Genetic study of gold-salt-induced immune disorders in the rat. Nephrol Dial Transplant 10:2187–2191

    PubMed  CAS  Google Scholar 

  58. Kermarrec N, Dubay C, De Gouyon B, Blanpied C, Gauguier D, Gillespie K, Druet P, Lathrop M, Hirsch F (1996) Serum IgE concentration and other immune manifestations of treatment with gold salts are linked to MHC and IL-4 regions in the rat. Genomics 31:111–114

    Article  PubMed  CAS  Google Scholar 

  59. Furuya T, Salstrom JL, McCall-Vining S, Cannon GW, Joe B, Remmers EF, Griffiths MM, Wilder RL (2000) Genetic dissection of a rat model for rheumatoid arthritis: significant gender influences on autosomal modifier loci. Hum Mol Genet 9:2241–2250

    PubMed  CAS  Google Scholar 

  60. Mas M, Cavailles P, Colacios C, Subra JF, Lagrange D, Calise M, Christen MO, Druet P, Pelletier L, Gauguier D, Fournie GJ (2004) Studies of congenic lines in the Brown Norway rat model of Th2-mediated immunopathological disorders show that the aurothiopropanol sulfonate-induced immunological disorder (Aiid3) locus on chromosome 9 plays a major role compared to Aiid2 on chromosome 10. J Immunol 172:6354–6361

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks the members of Autoimmunity and Immunoregulation team as well as the member of Gilbert Fournié team for their helpful comments and suggestions. We would like also to thank all the dedicated people who participated in this work, in particular, Philippe Druet, Dominique Lagrange, Lucette Pelletier, Magali Mas, Jean-François Subra, Pierre Cavallès, Bastien Cautain, Emmanuel Xystrakis, Céline Colacios, Anne Dejean, Laurence Ordonez, Christine Duthoit, Lucille Lamouroux, Olivier Papapietro, and Audrey Casemayou . We present our apologies to colleagues whose work could not be adequately cited or discussed, due to space limitations. This work was supported by “Institut National de la Santé et de la Recherche Médicale (INSERM),” the Conseil Général de Région Midi-Pyrénées, by grants from “ Agence Nationale de Recherche,” “Association pour la Recherche sur la Sclérose en Plaques,” “Fondation pour la Recherche Médicale,” “Association Française contre les myopathies,” and Arthrithis foundation Courtin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhadi Saoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bernard, I., Fournié, G.J., Saoudi, A. (2010). Genomics Studies of Immune-Mediated Diseases Using the BN–LEW Rat Model. In: Anegon, I. (eds) Rat Genomics. Methods in Molecular Biology, vol 597. Humana Press. https://doi.org/10.1007/978-1-60327-389-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-389-3_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-388-6

  • Online ISBN: 978-1-60327-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics