Skip to main content

Genome-Wide Analysis for Protein−DNA Interaction: ChIP-Chip

  • Protocol
  • First Online:
Molecular Endocrinology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 590))

Abstract

Chromatin immunoprecipitation (ChIP) is a well-established procedure for protein−DNA interaction research. ChIP-chip, combining chromatin immunoprecipitation (ChIP) and microarray technology (Chip), enables scientists to survey genome-wide DNA binding sites for a given protein. The ChIP-chip technique has been used to identify transcription factor binding sites, explore epigenomic information and investigate factors in DNA replicate/repairs. Here we describe a protocol for ChIP-chip to study Pituitary Tumor Transforming Gene (PTTG1) in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strutt, H., and Paro, R. (1999) Mapping DNA target sites of chromatin proteins in vivo by formaldehyde crosslinking. Methods Mol. Biol. 119:455–467.

    PubMed  CAS  Google Scholar 

  2. Southern, E.M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.

    Article  PubMed  CAS  Google Scholar 

  3. Sandmann, T., Jakobsen, J.S., and Furlong, E.E. (2006) ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat. Protoc. 1:2839–2855.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, T.I., Johnstone, S.E., and Young, R.A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat. Protoc. 1:729–748.

    Article  PubMed  CAS  Google Scholar 

  5. Buck, M.J., and Lieb, J.D. (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360.

    Article  PubMed  CAS  Google Scholar 

  6. Zhu, X., Gerstein, M., and Snyder, M. (2007) Getting connected: analysis and principles of biological networks. Genes Dev. 21:1010–1024.

    Article  PubMed  CAS  Google Scholar 

  7. Hanlon, S.E., and Lieb, J.D. (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr. Opin. Genet. Dev. 14:697–705.

    Article  CAS  Google Scholar 

  8. MacAlpine, D.M., and Bell, S.P. (2005) A genomic view of eukaryotic DNA replication. Chromosome. Res. 13:309–326.

    Article  PubMed  CAS  Google Scholar 

  9. van, S.B., and Henikoff, S. (2003) Epigenomic profiling using microarrays. Biotechniques 35:346–4, 356.

    Google Scholar 

  10. Ishii, K., Arib, G., Lin, C., Van, H.G., and Laemmli, U.K. (2002) Chromatin boundaries in budding yeast: the nuclear pore connection. Cell 109:551–562.

    Article  PubMed  CAS  Google Scholar 

  11. Barker, D.L., Hansen, M.S., Faruqi, A.F., Giannola, D., Irsula, O.R., Lasken, R.S., Latterich, M., Makarov, V., Oliphant, A., Pinter, J.H. et al (2004) Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res. 14:901–907.

    Article  PubMed  CAS  Google Scholar 

  12. Tong, Y., Tan, Y., Zhou, C., and Melmed, S. (2007) Pituitary tumor transforming gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene 26:5596–5605.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, T.H., Barrera,L.O., and Ren, B. (2007) ChIP-chip for genome-wid

    Google Scholar 

  14. Li, Z., Van, C.S., Qu, C., Cavenee, W.K., Zhang, M.Q., and Ren, B. (2003) A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc. Natl. Acad. Sci. U. S. A 100:8164–8169.

    Article  PubMed  CAS  Google Scholar 

  15. Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D. et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102:109–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant CA 75979 (SM), T32 DK007770, and The Doris Factor Molecular Endocrinology Laboratory. We thank Dr. Shlomo Melmed for his critical discussion in preparing this protocol.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tong, Y., Falk, J. (2009). Genome-Wide Analysis for Protein−DNA Interaction: ChIP-Chip. In: Park-Sarge, OK., Curry, T. (eds) Molecular Endocrinology. Methods in Molecular Biology, vol 590. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-378-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-378-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-377-0

  • Online ISBN: 978-1-60327-378-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics