Skip to main content

Short Tandem Repeats and Genetic Variation

  • Protocol
  • First Online:
Genetic Variation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 628))

Abstract

Single nucleotide polymorphisms (SNPs) are widely distributed in the human genome and although most SNPs are the result of independent point-mutations, there are exceptions. When studying distances between SNPs, a periodic pattern in the distance between pairs of identical SNPs has been found to be heavily correlated with periodicity in short tandem repeats (STRs). STRs are short DNA segments, widely distributed in the human genome and mainly found outside known tandem repeats. Because of the biased occurrence of SNPs, special care has to be taken when analyzing SNP-variation in STRs. We present a review of STRs in the human genome and discuss molecular mechanisms related to the biased occurrence of SNPs in STRs, and its implications for genome comparisons and genetic association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

SNP:

single nucleotide polymorphism

bp:

base pair

STR:

short tandem repeat

References

  1. Sherry, S.T., Ward, M. and Sirotkin, K. (1999) dbSNP - database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res., 9, 677–679.

    PubMed  CAS  Google Scholar 

  2. Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M. and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308–311.

    Article  PubMed  CAS  Google Scholar 

  3. Eberle, M.A., Ng, P.C., Kuhn, K., Zhou, L., Peiffer, D.A., Galver, L., et al. (2007) Power to detect risk alleles using genome-wide tag SNP panels. PLoS Genet., 3, e170.

    Article  Google Scholar 

  4. Fan, J.-B., Chee, M.S. and Gunderson, K.L. (2006) Highly parallel genomic assays. Nat. Rev. Genet., 7, 632–644.

    Article  PubMed  CAS  Google Scholar 

  5. Easton, D.F., Pooley, K.A., Dunning, A.M., Pharoah, P.D.P., Thompson, D., Ballinger, D.G., et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 447, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  6. Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 445, 881–885.

    Article  PubMed  CAS  Google Scholar 

  7. The Wellcome Trust Case Control Con­sortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447, 661–678.

    Article  Google Scholar 

  8. Stoneking, M. (2001) Single nucleotide polymorphisms. From the evolutionary past. Nature, 409, 821–822.

    Article  PubMed  CAS  Google Scholar 

  9. The International HapMap Consortium. (2003) The International HapMap Project. Nature, 426, 789–796.

    Article  Google Scholar 

  10. Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York.

    Google Scholar 

  11. Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol., 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  12. Hasegawa, M., Kishino, H. and Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174.

    Article  PubMed  CAS  Google Scholar 

  13. Madsen, B.E., Villesen, P. and Wiuf, C. (2007) A periodic pattern of SNPs in the human genome. Genome Res., 17, 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  14. Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res., 27, 573–580.

    Article  PubMed  CAS  Google Scholar 

  15. Kolpakov, R., Bana, G. and Kucherov, G. (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res., 31, 3672–3678.

    Article  PubMed  CAS  Google Scholar 

  16. Castelo, A.T., Martins, W. and Gao, G.R. (2002) TROLL - tandem repeat occurrence locator. Bioinformatics, 18, 634–636.

    Article  PubMed  CAS  Google Scholar 

  17. Leclercq, S., Rivals, E. and Jarne, P. (2007) Detecting microsatellites within genomes: significant variation among algorithms. BMC Bioinformatics, 8, 125.

    Article  PubMed  Google Scholar 

  18. Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D. and Kent, W.J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res., 32, D493-D496.

    Article  PubMed  CAS  Google Scholar 

  19. Boby, T., Patch, A.M. and Aves, S.J. (2005) TRbase: a database relating tandem repeats to disease genes for the human genome. Bioinformatics, 21, 811–816.

    Article  PubMed  CAS  Google Scholar 

  20. Borstnik, B. and Pumpernik, D. (2002) Tandem repeats in protein coding regions of primate genes. Genome Res., 12, 909–915.

    Article  PubMed  CAS  Google Scholar 

  21. O’Dushlaine, C., Edwards, R., Park, S. and Shields, D. (2005) Tandem repeat copy-number variation in protein-coding regions of human genes. Genome Biol., 6, R69.

    Article  PubMed  Google Scholar 

  22. Hancock, J.M. and Simon, M. (2005) Simple sequence repeats in proteins and their significance for network evolution. Gene, 345, 113–118.

    Article  PubMed  CAS  Google Scholar 

  23. Alba, M.M. and Guigo, R. (2004) Comparative analysis of amino acid repeats in rodents and humans. Genome Res., 14, 549–554.

    Article  PubMed  CAS  Google Scholar 

  24. Kashi, Y. and King, D.G. (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet., 22, 253–259.

    Article  PubMed  CAS  Google Scholar 

  25. Kelkar, Y.D., Tyekucheva, S., Chiaromonte, F. and Makova, K.D. (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res., 18, 30–38.

    Article  PubMed  CAS  Google Scholar 

  26. Mrazek, J., Guo, X. and Shah, A. (2007) Simple sequence repeats in prokaryotic genomes. Proc. Natl. Acad. Sci. U.S.A., 104, 8472–8477.

    Article  PubMed  CAS  Google Scholar 

  27. Hwang, D.G. and Green, P. (2004) Inaugural article: Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc. Natl. Acad. Sci. U.S.A., 101, 13994–14001.

    Article  PubMed  CAS  Google Scholar 

  28. Lai, Y. and Sun, F. (2003) The Relationship Between Microsatellite Slippage Mutation Rate and the Number of Repeat Units. Mol. Biol. Evol., 20, 2123–2131.

    Article  PubMed  CAS  Google Scholar 

  29. Almeida, P. and Penha-Goncalves, C. (2004) Long perfect dinucleotide repeats are typical of vertebrates, show motif preferences and size convergence. Mol. Biol. Evol., 21, 1226–1233.

    Article  PubMed  CAS  Google Scholar 

  30. Levinson, G. and Gutman, G.A. (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol., 4, 203–221.

    PubMed  CAS  Google Scholar 

  31. Pearson, C.E., Edamura, K.N. and Cleary, J.D. (2005) Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet., 6, 729–742.

    Article  PubMed  CAS  Google Scholar 

  32. Ellegren, H. (2004) Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet., 5, 435–445.

    Article  PubMed  CAS  Google Scholar 

  33. Chambers, G.K. and MacAvoy, E.S. (2000) Microsatellites: consensus and controversy. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 126, 455–476.

    Article  PubMed  CAS  Google Scholar 

  34. Kruglyak, S., Durrett, R.T., Schug, M.D. and Aquadro, C.F. (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. U.S.A., 95, 10774–10778.

    Article  PubMed  CAS  Google Scholar 

  35. Mirkin, S.M. (2007) Expandable DNA repeats and human disease. Nature, 447, 932–940.

    Article  PubMed  CAS  Google Scholar 

  36. Weber, J.L. and Wong, C. (1993) Mutation of human short tandem repeats. Hum. Mol. Genet., 2, 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  37. Walsh, P.S., Fildes, N.J. and Reynolds, R. (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res., 24, 2807–2812.

    Article  PubMed  CAS  Google Scholar 

  38. Jeffreys, A.J., Barber, R., Bois, P., Buard, J., Dubrova, Y.E., Grant, G., et al. (1999) Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis, 20, 1665–1675.

    Article  PubMed  CAS  Google Scholar 

  39. Holliday, R. (1964) A mechanism for gene conversion in fungi. Genet. Res., 5, 282–304.

    Article  Google Scholar 

  40. Lewin, B. (2004) Genes VIII. Prentice Hall, New Jersey.

    Google Scholar 

  41. Warren, S.T., Zhang, F., Licameli, G.R. and Peters, J.F. (1987) The fragile X site in somatic cell hybrids: an approach for molecular cloning of fragile sites. Science, 237, 420–423.

    Article  PubMed  CAS  Google Scholar 

  42. Kremer, E.J., Pritchard, M., Lynch, M., Yu, S., Holman, K., Baker, E., et al. (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science, 252, 1711–1714.

    Article  PubMed  CAS  Google Scholar 

  43. Verkerk, A.J.M.H., Pieretti, M., Sutcliffe, J.S., Fu, Y.-H., Kuhl, D.P.A., Pizzuti, A., et al. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.

    Article  PubMed  CAS  Google Scholar 

  44. Yu, S., Pritchard, M., Kremer, E., Lynch, M., Nancarrow, J., Baker, E., et al. (1991) Fragile X genotype characterized by an unstable region of DNA. Science, 252, 1179–1181.

    Article  CAS  Google Scholar 

  45. Collins, F.S., Drumm, M.L., Cole, J.L., Lockwood, W.K., Vande Woude, G.F. and Iannuzzi, M.C. (1987) Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science, 235, 1046–1049.

    Article  PubMed  CAS  Google Scholar 

  46. Kerem, B., Rommens, J.M., Buchanan, J.A., Markiewicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., Tsui, L.C. (1989) Identification of the cystic fibrosis gene: genetic analysis. Science, 245(4922), 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  47. Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science, 245(4922), 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  48. Rommens, J.M., Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science, 245(4922), 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  49. Ellegren, H. (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet., 16, 551–558.

    Article  PubMed  CAS  Google Scholar 

  50. Toth, G., Gaspari, Z. and Jurka, J. (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res., 10, 967–981.

    Article  PubMed  CAS  Google Scholar 

  51. International Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921.

    Article  Google Scholar 

  52. Lawson, M.J. and Zhang, L. Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5′-UTR region. Gene, 407, 54–62.

    Google Scholar 

  53. Thomas, E.E. (2005) Short, local duplications in eukaryotic genomes. Curr. Opin. Genet. Dev., 15, 640–644.

    Article  PubMed  CAS  Google Scholar 

  54. Li, Y.-C., Korol, A.B., Fahima, T. and Nevo, E. (2004) Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol., 21, 991–1007.

    Article  PubMed  CAS  Google Scholar 

  55. Sutherland, G.R. and Richards, R.I. (1995) Simple tandem DNA repeats and human genetic disease. Proc. Natl. Acad. Sci. U.S.A., 92, 3636–3641.

    Article  PubMed  CAS  Google Scholar 

  56. Zuckerkandl, E. (2002) Why so many noncoding nucleotides? The eukaryote genome as an epigenetic machine. Genetica, 115, 105–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Wiuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Madsen, B.E., Villesen, P., Wiuf, C. (2010). Short Tandem Repeats and Genetic Variation. In: Barnes, M., Breen, G. (eds) Genetic Variation. Methods in Molecular Biology, vol 628. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-367-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-367-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-366-4

  • Online ISBN: 978-1-60327-367-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics